PROJECT REPORT

loT Software Development

Higher Diploma in Science in Computing

Internet of Things Online Stream Sep 2017

NET R Richard Seaman
Student Number: 17119111
Date: 07/05/2018

Lecturer: Cristian Rusu

INDEX

1. INTRODUCTION....coiciiiiiiiriieiiiecc e 2
2. HARDWARE ...ttt 4
3. SOFTWARE ..ottt 6
4. NETWORK.. ..ottt 8

5. LINKS TO SOURCE CODE & PRESENTATION

2 of 10

1. INTRODUCTION

This report was written by Richard Seaman and forms part of
the Project submission for the module 10T Software
Development.

The project has not changed significantly from the Project
Proposal. This report is intended to follow on from the proposal
document.

A visualisation of the entire project and all of its components is
provided overleaf.

The hardware, software and network components of the project
are then outlined in turn and discussed in detail.

Finally, links to the source code and video presentations are
provided at the end of the report.

Config
Upload

-«

2018-05-07 : 10-30-08

Time be nsor readings. Multiple
sensor readings are averaged before
uploading

m

Time between sensor uploads. This will be
the increment between timestamps.

30m

Minimum time between image captures.

m

Delay between detecting the door is open
and taking the picture

Os

Minimum time that each disolav messaae is

Front End
(I0S App)

~

Images &
Readings
Download

Back End
(Firebase &
Google Storage)

Config
Download

Images &
Readings

Upload RPI, Sensors

& Mounting

Temptation
Cupboard

Home Network

2. HARDWARE

An actual image of the hardware used
is shown overleaf. The hardware is laid
out and fixed in position on the
mounting. This image and the
accompanying labels serve as the
schematic representation of the
hardware.

2.1 Mounting

The mounting is a simple off-cut of
MDF, which is screwed in place at the
rear of the cupboard. The hardware is
attached to the mounting using
thumbtacks.

2.2 Raspberry Pi 3 Model &
GrovePi

The Raspberry Pi and GrovePi are
mounted centrally, within reach of all
other components. The raspberry pi is
used as the main computational
platform.

2.3 Raspberry Pi Camera Module
V2

The camera is used to capture images
of the cupboard culprits. It is positioned
at the top of the mounting to allow a

clear line of sight over any potential
bottles / treats etc. This provides the
best opportunity to capture a clear
image of the person who opened the
cupboard door.

The camera is the only component that
doesn't connect to the GrovePi
interface, but directly to the raspberry
pi. The camera is held in place using
thumbtacks and a paper clip. This
allows final, slight adjustments of the
camera position to be made in situ.

2.4 Grove Ultrasonic Ranger
Sensor

The ultrasonic ranger is used to detect
when the cupboard door is open.
Similarly, to the camera, it is positioned
at the top of the mounting to provide the
best line of sight to the cupboard door.

25 Grove RGB Backlit LCD

The LCD screen is used to provide
visual feedback (text and colour) on the
program operation and status including
the door open (or “Raid”) count,
configuration updates and image
uploads.

4 of 10

2.6 Grove Temperature &
Humidity Sensor (blue)

The temperature and humidity sensor is
used to take temperature and humidity
readings within the cupboard. It is
positioned below the raspberry pi so
that it will not be affected by any heat
gains rising from it.

2.7 Grove Red / Green LED

The red LED turns on when the door is
detected as open. It is used
predominantly for troubleshooting (if
something is blocking the ranger while
the door is open for example).

The green LED turns on when the
required time between image captures
has passed (i.e. ready to take a picture).

2.8 Grove Buzzer

The buzzer is used to provide a noise
deterrent when the door is open and the
maximum daily count has been
exceeded.

2.9 Grove Button

The button is used to shut down the
raspberry pi in a safe manner.

5 of 10
Raspberry Pi Camera Module V2

(camera connector on raspberry
pi between Ethernet and HDMI
ports)

Grove Ultrasonic Ranger Sensor
(GrovePi port: D5)

Grove RGB Backlit LCD
(GrovePi port: 12C - 1)

Camera adjustment mechanism

3
i
is
is
£3
:

Medium-density fibreboard
(MDF) mounting, screwed
to rear of cupboard.

Green LED
(GrovePi port: D2)

Red LED

(GrovePi port: D3)
Grove Button

(GrovePi port: D7)

Grove Temperature & Humidity Sensor
(GrovePi port: D4)

Grove Buzzer
(GrovePi port: D6)

3. SOFTWARE

A single program, “Main.py”, runs on the Raspberry Pi. This
program is automatically executed when the system boots up.
This is achieved by adding an @reboot command to the
crontab file.

Main.py is written in python and is well documented. Please
refer to the GitHub links provided at the end of this report.

A detailed flow diagram for Main.py is included overleaf and
includes three main parts;

1. Initialisation — all of the initial setup and housekeeping
required

2. Main Loop — an indefinite loop which carries out the main
logic of the program

3. Image Processing Loop — an indefinite loop which runs
in the background and checks for any saved images to

process.

3.1 Operation

The operation of the program is evident from its source code.
However, a brief overview of how the program operates is given
below.

When the program begins, it creates a log file where all of it’s
information and error messages will be logged. It then registers
handlers for various signal interrupts so that it gracefully shuts

6 of 10

down. Local “Images” and “Archive” folders are created if
required. Firebase and Google Cloud Storage are initiated and
authenticated. The image processing loop is kicked off in the
background before beginning the main loop.

A number of time intervals are defined which control how often
each of the periodic tasks within the main loop are carried out.
If sufficient time has passed since the previous time a task was
done, the task will be performed. Periodic tasks include;
syncing configuration settings, updating the display, taking
sensor readings and uploading average sensor readings.

Regardless of how much time has passed, each cycle checks
whether the door is open and performs the required tasks if it
is or isn’t. The ultrasonic ranger seemed to give a number of
false readings and confused the program into thinking the door
was open. As a result, in order for the door to be considered
genuinely open, a number of door open readings must be
recorded in a row.

Images that are captured are processed by the background
loop. They are resized (reducing their file size by approximately
98%), uploaded and archived. Any archived images older than
a week are also deleted to save space.

3.2 Front End

An iOS application was developed to serve as the front end for
the project. The app allows the configuration settings to be
adjusted. It also allows the user to browse through the images
of culprits. Due to time constraints, the temperature and
humidity readings are not available in the application, although
they can be viewed directly in firebase.

7 of 10

3.3 Main.py - Flow Diagram

‘ Start H Create H Register Signal Connect to Firebase F'rusct:leTFo%ep in Start Main
Log File Interrupt Handlers & Google Storage background Loop

A ry

Disahle
Camera

Create Local
Folders

ol
o
[17]
=
Y

Sensar
Upload

Sensar
Reading

Button
Pressed

cnn%?ﬁnr;ti{sn Update Raid count
& temperature on
Os seftings with e E:;:laéi
i Firebase Read & ges
remember I
Archive temperature &
Log File humidity Reset
i Readings
Shut- Update ”
down Display Upload | |
- [Green] [Orange] [Red] Data
-
¥ ¥
Image Check for ' .
Processor new de?le lRemze |uplmaﬂ ,lﬂkrc:hwe
Images isplay mages mages mages

¥

Check for
Sleep old
r Images

h —

|5 =
1 week
old

Delete
Images

Upload Data

4. NETWORK

Firebase and Google Cloud Storage are used for the backend
of this project and provide the Network component.

4.1 Firebase Authentication

The data in the real time database and the images in google
cloud storage are not made publicly available to everybody.
Firebase authentication is used to ensure only users with the
required privileges may access it.

The Raspberry Pi has a local copy of an authentication file
which is used to grant access to the data. Note that this file is
not included in the git repository but it's path and use can be
seen in the source code. The iOS app requires the user to sign
in through Google in order to access the data.

4.2 Firebase Realtime Database

A real-time database is used to store the data for the project.
The structure of a Firebase Realtime Database follows a JSON
tree format.

There are three root nodes used; conditions, config and
culprits. Example data from each node is provided overleaf.

Conditions

The conditions node contains the temperature and humidity
readings. These are the average readings, periodically
uploaded by Main.py.

8 of 10

Config

The config node contains all of the adjustable configuration
values for the Main.py program. These values are set and
uploaded by the iOS application (which includes validation).
The values are then synced within the Main.py program.

Culprits

The culprits node contains the image file name and timestamp
for each instance that Main.py detected and captured a culprit.
This information is uploaded by Main.py. Note that the image
file itself is not included here. This information is queried by the
IOS application, which in turn knows where to download the
actual image file, based on the image name.

4.3 Google Cloud Storage

Google cloud storage is tightly integrated with Firebase and can
share the authentication process. The background loop within
Main.py uploads the resized images to a bucket on google
cloud storage. The location and URL of this bucket is known by
the 10S application so it can download any image it needs by
simply appending the image file name.

= conﬁg

= culprits

=|.- conditions

5. 1524929514

humidity: 4¢
temperature: 1§

timestamp: "2618-84-28:15-31-5:

- 1524929530
0- 1524933081

------- time_between_checks_background: 6E
------- time_between_display_updates: 18

------- time_between_image_captures: 6E

------- time_between_sensor_reads: 6F

------- time_between_sensor_uploads: 188€

------- time_delay_before_picture: 9

2 1524938314

imageName: "2818-84-28 17:58:33.]p
timestamp: "2618-84-28:17-58-3!

n 1524938466
u 1524938484
(- 1524952967

Example Data from Realtime Database

(Note: epoch time used as key for timeseries data)

Name

B 20180428 10:57:34.jpg

2018-04-28 10:57:30.jpg
2018-04-28 10:58:01.jpg
2018-04-28 11:55:35.ipg
2018-04-28 11:56112.jpg
2018-04-28 11:5711.jpg
2018-04-28 15:29:33.jpg
2018-04-28 17:58:33.jpg
2018-04-28 18:01:05.jpg
2018-04-28 18:01:23.jpg
2018-04-28 22:02:47 jpg
2018-04-28 22:03:57.jpg
2018-04-28 22:08:57 jpg
2018-04-29 09:44:37]pg
2018-04-29 10:15:31.jpg
2018-04-29 10:15:34.jpg
2018-04-29 10:16:16.jpg
2018-04-29 10:17:42.]pg

2018-04-29 10:31:36.jpg

8.86 KB

544 KB

9.15 KB

9.17 KB

9.19 KB

13.65 KB

12.08 KB

13.42 KB

10.02 KB

8.76 KB

9.19 KB

9.19 KB

o
3]
[=a]
e
m

9 of 10

Type

image/jpeg
image/jpeq
image/jpeq
image/jpeg
image/jpeg
image/jpeq
image/jpeq
image/jpeq
image/jpeg
image/jpeq
image/jpeq
image/jpeq
image/jpeg
image/jpeg
image/jpeq
image/jpeq
image/jpeg
image/jpeg

image/jpeq

Example Image Files on Google Cloud Storage

(resized prior to upload so very small)

5. LINKS TO SOURCE CODE & PRESENTATION

Please find links below to the various components of this
project.

Main.py

The source code for the main python program which runs on
the Raspberry Pi is available at the following link:

https://github.com/Richard-Seaman/CupboardCulprit

iOS Application

The source code (Swift) for the iOS application which is used
as the front end of this project is available at the following link:

https://github.com/Richard-Seaman/CupboardCulpritlos

Video Presentation

10 of 10

https://github.com/Richard-Seaman/CupboardCulprit
https://github.com/Richard-Seaman/CupboardCulpritIos

