

SOCKETS & SENSORS - TECHNICAL REPORT

National College of Ireland
Higher Diploma in Science in Computing
Internet of Things Online Stream Sep 2017

Name: Richard Seaman

Student Number: 17119111

Email x17119111@student.ncirl.ie

Supervisor Josephine Andrews

1 of 54

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY​ 5

2. INTRODUCTION​ 6

2.1. Background... 6
2.2. Scope / Aims..6
2.3. Technologies & Resources... 6
2.4. Assumptions / Constraints / Standards... 8

3. REQUIREMENTS​ 9

3.1. Functional Requirements...9
3.2. Non-Functional Requirements...12

4. DESIGN & ARCHITECTURE​ 14

5. IMPLEMENTATION​ 16

5.1. Backend (Database Design)...16
5.2. RF Wall Sockets..18
5.3. Wireless Sensor Node..22
5.4. Base Station...26
5.5. Xbee Devices & Network... 30
5.6. Graphical User Interface (iOS App)..33

6. TESTING​ 40

6.1. WHITE BOX TESTING..40
6.2. BLACK BOX TESTING.. 47

7. EVALUATION & CONCLUSION​ 50

8. FURTHER DEVELOPMENT​ 51

9. BIBLIOGRAPHY​ 52

10. APPENDIX​ 53

11. GITHUB REPOSITORIES​ 54

2 of 54

TABLE OF FIGURES

Figure 1 - Use Case Diagram​ 10
Figure 2 - Project Overview​ 15
Figure 3 - Root Nodes​ 16
Figure 4 - Sensor Node​ 16
Figure 5 - Sensor Meta Data Node​ 17
Figure 6 - Sockets Node​ 17
Figure 7 - RF Wall Sockets & Remote Controls​ 18
Figure 8 - RPi with 433MHz transmitter and receiver​ 19
Figure 9 - "Sniffing" the Socket Codes​ 20
Figure 10 - Socket Positions​ 21
Figure 11 - Architecture of a Sensor Node (Carr & Zemouri, 2018)​ 22
Figure 12 - Sensor Node Wiring Diagram​ 23
Figure 13 - WSN Design​ 24
Figure 14 - WSN Actual​ 24
Figure 15 - Base Station Architecture​ 26
Figure 16 – RPi Wiring Diagram​ 27
Figure 17 - Base Station Design​ 28
Figure 18 - Base Station Actual​ 28
Figure 19 - Initial Testing of Serial Communication Between XBee Devices​ 30
Figure 20 - API Mode: frames​ 31
Figure 21 - Xbee Device Network Configuration​ 32
Figure 22 - Sockets Tab​ 34
Figure 23 - Keyboard and RPi Sync Error​ 35
Figure 24 - Sensors Tab (Selector)​ 36
Figure 25 - Sensors Tab (Data)​ 37
Figure 26 - Temperature Data & Loading Screen​ 38
Figure 27 - Base Station and Wireless Sensor Node​ 43
Figure 28 - Sockets Plugged in for Testing​ 45
Figure 29 - RPi with 433MHz Transmitter & Receiver​ 45
Figure 30 - Issuing Socket Commands Using 433 Utils Library​ 46
Figure 31 - Sensors Tab & Data​ 48

LIST OF TABLES

Table 1 - Socket Codes​ 20
Table 2 - XBee Device Configuration​ 32
Table 3 - XBee Shield Indicator LEDs (Sparkfun, 2018)​ 43

3 of 54

GLOSSARY OF TERMS

Term Definition

IoT Internet of Things

RPi Raspberry Pi

HAT Hardware Attached on Top

RF Radio Frequency

SSH Secure Shell

IEEE The Institute of Electrical and Electronics Engineers

iOS A mobile operating system created and developed by Apple
Inc.

JSON JavaScript Object Notation

Epoch Time The Unix epoch is the number of seconds that have elapsed
since January 1, 1970 (midnight UTC/GMT)

XCode
An integrated development environment for macOS containing
a suite of software development tools developed by Apple for
developing software for macOS, iOS, watchOS, and tvOS.

XBee A radio module provided by Digi International.

DHT Sensor A readily available sensor which senses temperature and
humidity.

I/O Input / Output

IDE Integrated Development Environment

TX Transmitter

RX Receiver

XCTU A software package provided by DIGI for configuration of their
Xbee devices.

4 of 54

1.​ EXECUTIVE SUMMARY

This report outlines the final project of the Higher Diploma in Science in Computing,
Internet of Things Stream. The project is called “Sockets & Sensors”. The project
addresses two broad topics related to building services engineering; monitoring
internal environmental conditions and controlling systems. These topics are
addressed in the context of a single domestic home.

The project has three main objectives. The first is to wirelessly monitor
environmental conditions and record them over time. The second is to facilitate the
remote control of a number of electrical wall sockets. The third and final objective is
to provide a user interface in order to view the monitored data and to control the
sockets.

A system is designed to achieve these objectives. The system consists of five main
components; a back-end service, a base station, a wireless sensor node,
radio-controlled wall sockets and a user interface in the form of an iOS application.
The design and implementation of each of these components, and how they operate
as a whole, is discussed in detail. A broad range of hardware devices are utilised
within the system including a Raspberry Pi, an Arduino, Xbee modules, electronic
components (LEDs, resistors, sensors etc.) and an iOS device. Similarly, multiple
programming languages are utilised including Python, C/C++ and Swift.

Individual system components and the system as a whole are tested in turn. Each of
the tests are successful and the system operates seamlessly as a whole. At the time
of writing this report, the system had been gathering data and controlling wall
sockets for approximately one month without issue.

The project achieved the three project objectives and provided a proof of concept for
both monitoring environmental conditions and controlling systems. The resulting
system can easily be scaled to cater for additional use cases.

5 of 54

2.​ INTRODUCTION

This document is the technical report submitted for the final project module of the
Higher Diploma in Science in Computing, Internet of Things Stream. The title of this
project is “Sockets & Sensors”.

This report begins by introducing the project including its background and aims. The
various functional and non-functional requirements are then outlined. The overall
design and architecture of the system used for the project is described and a
detailed outline of the implementation of each of the main system components is
then given. The methods used to test the system are provided before a final
evaluation and conclusion is drawn.

2.1.​ Background

As a building services engineer, I am very interested in energy use and internal
environmental conditions within buildings. When analysing these two topics, it is vital
to be able to monitor and control the various systems and environments within the
building.

I decided to base my project on a system which would allow me to monitor and
control various things within my own home.

2.2.​ Scope / Aims

With the limited time available, I was eager to contain the scope to something
achievable. I decided to try and include a single monitoring component and a single
control component. The logic being that if I could achieve this, I could easily add onto
the system in the future.

The scope of this project is to develop a system that is capable of:

1.​ Wirelessly monitoring an environmental condition within my house

2.​ Controlling a number of wall sockets within my home (on/off)

3.​ Providing a user interface to allow me to view the monitored data and control

the sockets.

I was also keen to move away from just using a single Raspberry Pi and I particularly
didn’t want to use the GrovePi HAT. I wanted to explore other IoT hardware and
remove the constraints of the GrovePi system.

2.3.​ Technologies & Resources

A range of hardware, software and network resources were required for this project,
including the following:

6 of 54

Hardware

●​ Raspberry Pi: for the base station (3 Model B V1.2 was used)

●​ Arduino: for the sensor node (an Uno was used)

●​ XBee x2: for communication between base station and sensor node (Series 1

modules were used)

●​ 433MHz Transmitter: for 433MHz communication between base station and

wall sockets

●​ 433MHz Receiver: for “sniffing” the 433MHz RF codes from the remote

controls that came with the sockets.

●​ DHT11 Sensor: to allow the sensor node sense it’s environment (temperature

and humidity)

●​ iPhone: for the user interface

●​ RF Wall Sockets: for RF control (on/off) of appliances connected to the

sockets.

●​ Electronic Components: LEDs, resistors, jumper wires, breadboard

Software

●​ Libraries:

o​ 433Utils: for communicating over 433Mhz RF (Ninja Blocks, 2018)

o​ xbee-arduino: for using the XBees in an Arduino sketch (Rapp, 2016)

o​ python-xbee: for using the Xbee devices in a python program (niolabs,

2018)

o​ SwiftChart: for graphing data in the iOS app (gpbl, 2018)

●​ XCode: for developing the iOS application

●​ Arduino IDE: for developing and loading the sketch for the ardunio

●​ XCTU: for configuring the Xbee devices and network

●​ Firebase: for a back-end service

Network

●​ WiFi: A home wifi network, with internet access, is required to access the

back-end services. It’s also required to allow remote access into the base

station (over SSH).

7 of 54

●​ ZigBee (2.4GHz): for communication between base station and sensor node

(and future sensor nodes).

●​ 433MHz: for control of wall sockets.

2.4.​ Assumptions / Constraints / Standards

There are a number of assumptions in this project:

●​ I will be the only user

●​ I will have an iOS device available to load the app onto.

●​ There will be no need to publish the iOS to the AppStore. Instead, it will be

loaded directly onto the device using XCode.

There are a number of constraints in this project:

●​ The base station must be powered up and running the relevant program in

order for the project features and functionality to be available.

●​ The base station must have internet access at all times in order to check

socket statuses and upload sensor readings

●​ The base station and wireless sensor node must not exceed the range of their

respective XBee devices. For the average home, this will not be an issue.

●​ There is no caching/buffering at the wireless node. If the signal is lost, or not

received by the base station, the data will be lost.

The IEEE 802.15.4 standard is utilised by the XBee devices used within this project.

8 of 54

3.​ REQUIREMENTS

There have been no changes to the project requirements since the initial submission.

3.1.​ Functional Requirements

I will be the sole user of this system. There will be no external users.
The end user requirements of this system align with the three items identified within
the project scope:

1.​ An ability to wirelessly sense whatever condition I like, from anywhere in my

home.

2.​ An ability to control (on/off) a number of wall sockets within my home

3.​ An ability to view the monitored data and control the sockets using my iPhone,

from anywhere with internet access.

3.1.1.​ System Requirements (Use Case Diagram)

A use case diagram for the system is provided in Figure 1. Each of the use cases
represent an end goal of the system and are in the format “Verb-Noun”. The three
actors identified are; Home Owner, Database Administrator and Installer / Developer.
In practice, each of these roles will be undertaken by one person (myself).

9 of 54

Figure 1 - Use Case Diagram

10 of 54

3.1.2.​ Requirement – Turn On / Off Socket

The use case “Turn on/off socket” is described in detail below.

Scope

The scope of this use case is for the home owner to turn on or off one of the RF
controlled wall sockets.

Description

This use case describes the control of an RF controlled wall socket by the home
owner.

Flow Description

Precondition

●​ The home owner has access to the iOS app and has been authenticated.

●​ The device with the iOS app installed on it has internet access.

●​ The wall sockets are plugged into various wall outlets around the house.

Activation

This use case starts when the home owner navigates to the “Sockets” tab within the
iOS app.

Main flow

●​ The user navigates to the Sockets tab within the app.

●​ The RPi has recently synced with the back end (A1).

●​ The user decides to turn on/off a particular socket and switches the

corresponding socket’s switch.

●​ The app updates the socket status on the back end.

●​ The base station detects a change on its next sync.

●​ The base station issues the RF signal with the corresponding code to turn

on/off the socket.

●​ The wall socket turns on/off.

Alternate flow

●​ (A1 – RPi hasn’t synced recently)

●​ The user interface for the sockets tab is disabled, preventing the user from

attempting to turn on/off a socket.

11 of 54

●​ The user is presented with an error message.

●​ The user is unable to turn on/off the socket.

Exceptional flow

-

Termination

The app’s user interface is updated accordingly and the system awaits further
commands.

3.2.​ Non-Functional Requirements

The project includes a number of non-functional requirements, as detailed below.

3.2.1.​ Availability Requirement

There is an availability requirement for this project. The wireless sensor node and
base station must be simultaneously available in order to successfully gather and
record data. The base station must also be available for issuing on/off commands to
the RF sockets.

If the base station or wireless sensor node fail at any time, the system will cease to
function.

3.2.2.​ Reliability Requirement

There is a reliability requirement for this project. As with most IoT devices, they must
be capable of operating for long periods of time with limited or no human interaction
required.

Any hardware must therefore be durable and capable of withstanding the
environments in which it will be installed. Software must be capable of handling
errors while continuing to operate. For example, sensors may occasionally read
strange readings which if unhandled, could cause the system to crash.

3.2.3.​ Security Requirement

There is a security requirement for this project. The monitored data is considered
confidential. It should not be able to be viewed by anybody other than the intended
user of the application.

The control of the sockets must also be limited to the intended user, otherwise
anybody could switch on / off electrical items within the house.

12 of 54

This requirement was upheld by using Firebase Authentication. A single user is
assigned permission to use this project (a specific Gmail address, signed in using
Google’s authentication).

3.2.4.​ Backup Requirement

There is a requirement to back up the data in the database. The database is the only
place where the historic gathered data is recorded. If the database was to be
deleted, all of the data would be lost. A more likely scenario, would be an entire node
within the json tree being accidentally removed either within the Firebase console, or
accidentally during the source code development.

Fortunately, Firebase automatically runs a daily back which includes real-time
databases and users. In addition, the real-time database can be manually exported
as a json file at any time (which was done periodically during the development
process).

13 of 54

4.​ DESIGN & ARCHITECTURE

This project involves a range of devices and technologies. Please refer to Figure 2
which provides an overview of the project, broken down into five main components.

Back End

Firebase is used for the backend of the project. The Firebase services required for
this project are the real-time databases and authentication, both of which are
available within its “Spark Plan” (free tier). The real-time database is used to store
the sensor data and the desired status of each wall outlet. The real-time aspect of
the service means that as soon as the base station uploads a reading, it will be
available for the user interface. Similarly, as soon the desired status of a wall socket
(on/off) is changed on the user interface, the status will be available to the base
station. The authentication service will ensure that access is kept (sufficiently)
secure.

Base Station

A Raspberry Pi, Xbee device and 433MHs transmitter and receiver are used as the
base station, which is responsible for:

●​ Listening for data from the sensor node

●​ Uploading sensor data to the back end

●​ Querying the back end for changes in the desired power outlet statuses.

●​ Transmitting on/off commands to the power outlets

A python script was created for the application logic and runs on an infinite loop on
the RPi. The base station (Xbee) and sensor node utilise the IEEE 802.15.4
standard for communication (2.4GHz). The base station and wall sockets
communicate using Radio Frequency in the 433MHz frequency band.

Sensor Node

An Arduino Uno, Xbee device and sensor circuit are used as the sensor node, which
is responsible for:

●​ Taking sensor(s) readings at set intervals

●​ Transmitting the data to the base station

A sketch (Arduino program) was created for the application logic and runs on an
infinite loop on the Arduino.

User Interface

An iOS application was developed for the user interface of the project and is
responsible for:

●​ Viewing historic and real time data from the sensors

14 of 54

●​ Setting the status of the wall sockets.

RF Wall Sockets

Simple radio frequency-controlled wall sockets were used to switch the power supply
on or off to a number of household appliances (when a transmission is received from
the base station).

Figure 2 - Project Overview

15 of 54

5.​ IMPLEMENTATION

This section describes how the five main components of this project were
implemented.

5.1.​ Backend (Database Design)

A Firebase real-time database is used in this project. A Firebase real-time database
is structured as a single JSON tree. For this project, three root nodes are used;
“sensors”, “sensorMeta” and “sockets”, as shown in Figure 3:

Figure 3 - Root Nodes

The sensors root node holds all of the data corresponding to the sensors, including
any gathered data. Figure 4 highlights the structure of the sensor node.

Figure 4 - Sensor Node

As there could potentially be multiple sensors included, the direct child nodes
correspond to particular sensors. In the example provided, the “dht” node contains all
of the data gathered from the DHT11 sensor on the wireless sensor node. If an
additional sensor was included, its data would be contained in a separate child node.

As all of the gathered data is time series data, the key used for each entry is a
timestamp (epoch time in seconds). For each timestamp, a human readable time
(string) is provided alongside whatever data was gathered. In the example provided,
both temperature and humidity readings were recorded.

The sensorMeta root node holds the meta data (non-time series data) for each of the
sensors. Figure 5 highlights the structure of the sensorMeta node.

16 of 54

Figure 5 - Sensor Meta Data Node

This meta data is required for the iOS application to successfully parse the time
series data and to initially display the list of available sensors. Each of the dataKeys
are used when parsing the time series data (note that they correspond to the keys in
Figure 4). The dataUnits are used when updating the y-axis units on the graphs. The
display and location values are used on the sensor selection screen.

The sockets root node holds all of the data corresponding to the sockets, including
the desired status (on/off) of each. Figure 6 highlights the structure of the sockets
node.

Figure 6 - Sockets Node

A child node is provided for each socket. Each of these nodes contain the display
name (as it appears in the app), the socket number (the physical number on the
device) and the desired status (1 = 0n, 0 = off) for their respective socket. An
“rpiLastCheck” node is also provided. This node is where the last sync time of the
base station is recorded. This enables the app to disable the UI if the base station
hasn’t synced recently.

A json export of the database was submitted along with this report.

17 of 54

5.2.​ RF Wall Sockets

The radio frequency-controlled wall sockets used in this project are readily available
from various suppliers. A socket pack, consisting of five RF sockets and two remote
controls was purchased for use in this project. The remote controls can be used to
turn on or off each of the sockets.

Figure 7 - RF Wall Sockets & Remote Controls

5.2.1.​ “Sniffing” the RF Codes

The remote controls which come with the sockets are pre-programmed with the
correct codes for turning on or off each socket. The remote controls have a 433MHz
transmitter and each socket has a 433MHz receiver. When a button is pressed on
the remote control, a 433MHz signal is transmitted with a code which corresponds to
the socket number and command of the button pressed (e.g. socket 1, on). Each
socket will receive the transmission, but only the socket whose on/off code matches
the transmitted code will turn on/off its power.

In order to control the sockets from another 433MHz transmitter (i.e. one attached to
the base station), it is necessary to determine what the codes are for each
command. One method of doing this is to run a program which uses a 433MHz
receiver to listen, or “sniff”, for transmitted signals. Once the program is running,
each button on the remote control can be pressed in turn and the corresponding
code for each can be detected and recorded.

18 of 54

A program from a third-party library (Ninja Blocks, 2018) was used for sniffing the
codes. The library was installed on the RPi and a 433MHz transmitter and receiver
(complete with attached antennas) were connected to the RPi.

Figure 8 - RPi with 433MHz transmitter and receiver

The program was run from the command line and each of the buttons on the remote
control were pressed in turn. When the program received a transmission, the code
was printed out to the command line, as shown in Figure 9. These codes were
recorded for later inclusion in the Base Station’s application logic.

19 of 54

Figure 9 - "Sniffing" the Socket Codes

The codes discovered from this exercise are provided in Table 1.

Table 1 - Socket Codes

Socket On Code Off Code

1 4308444 4308436

2 4308442 4308434

3 4308441 4308433

4 4308445 4308437

5 4308443 4308435

20 of 54

5.2.2.​ Positions of RF Wall Sockets

The sockets can be used to control the power to any electrical item that plugs in to a
standard wall socket. This provides great flexibility as the same RF wall sockets can
be moved from one room to another depending on what appliance / item needs to be
controlled.

Figure 10 shows the layout of my house. The current position of each socket is
identified by the small purple icons with an adjacent number, which corresponds to
the socket number.

Socket 1 and socket 5 in the Living Room control a plug-in light and the
entertainment devices (TV, PS4, Sky Box) respectively. Multiple devices are
controlled by socket 5 as they are all powered from a single extension lead. Socket 2
in the bedroom controls a plug-in light. Socket 4 in the office controls the power to
multiple screens and laptop chargers (again through an extension lead). Socket 3 in
the kitchen is currently not used to control anything.

Figure 10 - Socket Positions

21 of 54

5.3.​ Wireless Sensor Node

The wireless sensor node (WSN) used in this project is responsible for gathering the
environmental data and transmitting it back to the base station.

5.3.1.​ Architecture

The architecture of a sensor node is shown in Figure 11. Rather than attempting to
build a sensor node from scratch, an Arduino Uno was used to provide the micro
controller, analogue to digital converter and external memory components. In
addition, an Arduino can easily be powered from a standard socket (or battery) and
an integrated development environment (IDE) is available for developing and loading
the “sketches” (programs) onto it. In this case, the power supply is via USB from a
standard wall socket. Finally, the Xbee device acts as the transceiver, although it is
only required for transmission in this application. The Xbee devices and network are
discussed in greater detail in section 5.5.

Figure 11 - Architecture of a Sensor Node (Carr & Zemouri, 2018)

5.3.2.​ Design & Implementation

The large number of I/O pins on the Arduino provided great flexibility and meant that
multiple sensors and/or indicators could be included. The final design included a
single DHT11 temperature and humidity sensor and three LEDs. A red LED was
used to indicate an error, a green LED was used to indicate success and a blue LED
was used to indicate activity. Figure 12 shows the wiring diagram between the
Arduino and the sensor and LEDs.

22 of 54

Figure 12 - Sensor Node Wiring Diagram

In order to interface the Xbee with the Arduino, a shield is used. A shield is simply a
modular board which is plugged in on top of the Arduino in order to extend its
capabilities. In this case, the shield provides a seat for the Xbee device, Xbee
indicator LEDs (useful for troubleshooting / testing), a breakout space and replicates
all of the I/O pins and the reset button from below.

Figure 12 and Figure 13 show the design of the WSN and the actual WSN
respectively. Jumper wires were used for all connections.

23 of 54

Figure 13 - WSN Design

Figure 14 - WSN Actual

24 of 54

5.3.3.​ Arduino Sketch

A sketch is a block of code (program) that is uploaded to and run on an Arduino. The
Arduino language used in a sketch is merely a set of C/C++ functions, which are
passed to a C/C++ compiler.

Every sketch must contain two special functions; setup() and loop(). The setup()
function is called once, and as the name implies, is used for setup tasks and
initialisation. The loop() function is called over and over again once the setup()
function has run.

For this project, the setup() function is used to set the various pin modes, set the
serial baud rate and initialise the Xbee object (Rapp, 2016). The loop() function then
continuously takes readings from the sensor and attempts to transmit them to the
base station. The various LEDs are used throughout the loop as indicators. An
artificial delay is added at the end of the loop to limit the number of sensor readings
taken.

The sketch developed for this project is available at the Github link below. It was also
submitted together with this report.

25 of 54

5.4.​ Base Station

The base station (BS) used in this project is responsible for:

●​ receiving data from the wireless sensor node and uploading it to the back end

●​ checking the back end for socket status changes and transmitting the

relevant on/off socket commands

5.4.1.​ Architecture

Figure 15 shows the architecture used for the base station. An internet connected
computer is used as the main computational platform. A 433MHz transmitter (TX)
and receiver (RX) are used to enable radio communication on the 433MHz
frequency band. An Xbee is used to allow access to (and coordination of) the Xbee
network.

Figure 15 - Base Station Architecture

5.4.2.​ Design & Implementation

A Raspberry Pi (RPi) 3 Model B V1.2 is used as the base station’s internet
connected computer. A generic 433MHz transmitter and receiver are used for
transmitting and receiving 433MHz radio signals. Antennas were soldered to both
the TX and RX in order to improve performance. An Xbee Series 1 complete with
explorer dongle (USB interface) is used as the Xbee coordinator. Figure 16 shows
the wiring diagram for the RPi’s I/O pins.

26 of 54

Figure 16 – RPi Wiring Diagram

Figure 17 and Figure 18 show the design of the base station and the actual base
station respectively. Jumper wires were used for all connections.

27 of 54

Figure 17 - Base Station Design

Figure 18 - Base Station Actual

28 of 54

5.4.3.​ “Main.py” Program

A single “Main.py” python program was written which contains all of the base
station’s application logic.

One of the first things the program does, is create a log file. Any existing log files are
timestamped and archived before a new log file is created. This log file allows
important events or errors to be logged, which is invaluable during the development
process. Having the log file as a separate file also allows it to be tailed while SSH’ed
into the RPi. A number of these log files were included in this submission as
examples.

The program authenticates itself using the hardcoded credentials provided and
creates a persistent reference to the real-time Firebase database. This enables it to
both read from and write to the database.

A serial port is opened to the Xbee device and an Xbee object is created (niolabs,
2018). This Xbee object provides an API for any communication to/from the Xbee
network. For this project, the Xbee is only expected to receive transmissions from
the WSN. When a transmission is received, the Xbee object calls a designated
callback function on a background thread. In this case, the callback function handles
the processing and uploading of the data received.

Each of the RF socket on/off commands are hardcoded into the program. The socket
statuses are queried from the database and the corresponding commands are
issued. A third-party library (Ninja Blocks, 2018) is utilised for issuing 433MHz RF
signals. The program enters a continuous loop and periodically queries the database
for changes to the socket statuses. If a change is found, the corresponding signal is
issued.

Any signal interrupts are handled and the program gracefully exits.

The python program developed for this project is available at the Github link below. It
was also submitted together with this report.

29 of 54

5.5.​ Xbee Devices & Network

The Xbee devices and network represent one of the most difficult aspects of this
project. The devices and configuration software have a very steep learning curve
and the supplier’s documentation only cover generic use cases (DIGI, 2018). That
being said, once the system is understood and implemented correctly, it becomes
incredibly powerful with a vast range of possible applications.

At a very high level, Xbee devices operate in two main modes; transparent mode
and API mode.

5.5.1.​ Transparent Mode

Transparent mode is the default operating mode. Xbee devices can actually
communicate with each other straight out of the box, using transparent mode. The
device acts as a serial line replacement when it is in this mode. Essentially, any RF
data it receives, it transmits back out. The data passes through the device, which
assumedly is where the name came from.

Figure 19 shows the initial testing of the Xbee devices in transparent mode. The
window on the left is the Serial Monitor of the Arduino IDE (Xbee and shield
connected to Arduino) and the window on the right shows the “XCTU” software
provided by DIGI for configuring the devices (Xbee dongle connected to Macbook).

Figure 19 - Initial Testing of Serial Communication Between XBee Devices

30 of 54

5.5.2.​ API Mode

Application Programming Interface (API) operating mode is the alternative to
transparent mode. It is much more powerful, but also much more complicated. When
in API mode, all data that is received or transmitted by the device is contained within
frames which define operations or events within the module. Frames can include
data frames or command frames, for transmitting data payloads or remote
configuration of devices. Frames also include signal strength, source addresses,
response codes and much more, which is how API mode is capable of so much
more than transparent mode.

Figure 20 shows the frames log within the XCTU software. In this case, a coordinator
device has received a frame from an end device. The data payload (RF data in the
bottom right of the figure) corresponds to temperature and humidity readings of 18C
and 40% respectively.

Figure 20 - API Mode: frames

5.5.3.​ Device Configuration

The devices were configured in API mode. The Xbee device for the base station was
configured as the network coordinator. The Xbee device for the WSN was configured
as an end device. Each device was configured to use the same channel and network
ID and a 16-bit source address was designated for each device.

Table 2 provides the final configurations used for each of the devices. Any settings
not included in this table were kept as the default values. Figure 21 shows the
network configuration within the XCTU software, including a network diagram.

Once the devices were configured correctly, the various software libraries could be
used within the base station / WSN programs.

31 of 54

Table 2 - XBee Device Configuration

Description Abbrev. Xbee 1 (BS) Xbee 2 (WSN)

Node Identifier NI Coordinator End Device

Channel CH C C

Pan ID ID 3385 3385

Dest. Addr. High DH 0

Dest. Addr. Low DL 0

16-bit Source Addr. MY 1234 5678

Serial High SH 0013A200 0013A200

Serial Low SL 4163FDD4 4151306C

Coordinator Enable CE Coordinator [1] End Device [0]

Interface Data Rate BD 9600 [3] 9600 [3]

API Enable AP API enabled [2] API enabled [2]

Figure 21 - Xbee Device Network Configuration

32 of 54

5.6.​ Graphical User Interface (iOS App)

The graphical user interface is an iOS application. The application was not published
to Apple’s AppStore as there is only one intended user. In fact, making the
application available to multiple users would compromise the confidential information
(monitored data) as well as the control of the wall sockets. For these reasons, the
application must be loaded directly onto each iOS device, through XCode.

5.6.1.​ Architecture

A tab-based interface is used with two main tabs. The first tab is for controlling the
RF Wall Sockets and the second tab is for viewing and analysing the monitored data.
Using tabs in this manner provides a clean division between the Sockets and
Sensors aspects of the application.

5.6.2.​ Sockets Tab

Figure 22 shows the socket tab of the iOS app, which provides an interface for
controlling the sockets. There are two main sections included on this tab: “RPI” and
“Sockets”.

The RPI section provides information on when the base station last synced with the
back end (Firebase). If the time shown is relatively recently, it means that the base
station is available and running the required script for the control of the sockets to
work. If the time shown isn’t relatively recently, it means that the base station is
unavailable (for whatever reason). In this case, a warning will be displayed over the
sockets tab and the interface will be locked, preventing the user from attempting to
control the sockets, as shown in the screenshot on the right of Figure 23.

The Sockets section provides information on each of the available sockets. Each
socket has:

●​ The socket number (physical number on the socket)

●​ The display name for that socket, which is user adjustable. This allows the

name to be changed if the same socket is moved from one location to another

or has something new plugged into it. An example is provided in the

screenshot on the left of Figure 23.

●​ The status switch, which allows the user to turn on or off the socket.

Note that the application parses all of the information from the back end and displays
it accordingly. This means that if sockets are added or removed from the backend,
the sockets shown within the app will automatically be updated.

33 of 54

Figure 22 - Sockets Tab

34 of 54

Figure 23 - Keyboard and RPi Sync Error

5.6.3.​ Sensors Tab

The first screen of the “Sensors” tab is shown in Figure 24. This “selector” screen
allows the user to select a sensor from a list of available sensors. The list of
available sensors is automatically parsed from the database. The sensor meta data
(display and location) are displayed for each sensor. Similarly to the sockets tab, the
location of the sensor is user adjustable.

When a sensor is selected, a new “data” screen is displayed which graphs the
available data for that sensor against time. An example of the data screen is
provided in Figure 25. Tapping “Back” on this screen will return to the selector
screen.

35 of 54

Figure 24 - Sensors Tab (Selector)

36 of 54

Figure 25 - Sensors Tab (Data)

37 of 54

The data screen graphs any available data for the selected day. The default date
shown is the current day. It is possible to view historic data by using the arrows at
the top left and right of the screen to move back and forward in increments of 1 day
respectively. If the current date is selected, the next arrow (at the top right) is
disabled.

If the selected sensor takes multiple readings (as is the case with the DHT11 sensor
used), a reading selector will be displayed on top of the graph which can be used to
swap between readings. If another reading is selected, the data and y-axis unit and
scale will be updated accordingly. The sensor meta data from the database is used
to achieve this functionality. The screenshot on the left of Figure 26 shows the
alternative temperature readings.

If the value at a particular time is required, the user can tap anywhere on the graph
to make a vertical line appear with the value at that time displayed above it.

As there is potentially a huge amount of data, a loading screen is displayed while the
data is asynchronously fetched from the database. This loading screen is shown in
the screenshot on the right of Figure 26.

Figure 26 - Temperature Data & Loading Screen

38 of 54

5.6.4.​ Source Code

XCode was used to develop the iOS application for this project.

The source code for this application is available at the Github link below. It was also
submitted together with this report.

5.6.5.​

39 of 54

6.​ TESTING

Testing is incredibly important for any application. This is particularly true for this
project, which consists of many different hardware, software and network
components which must all work together to achieve the overall project objectives.

This section outlines the formal testing procedures and cases which were carried out
to test this project. A number of white box and black box tests were undertaken.
Each test is described in turn and the test procedure and result are provided in each
case.

There was of course much informal testing carried out during the development
process itself. However, these tests were not captured in any form of documentation.
Nonetheless, these ongoing tests contributed to the overall quality of the project and
the ultimate success of the black box test cases.

6.1.​ WHITE BOX TESTING

A number of white box tests were carried out to ensure the correct operation of the
individual components within the system.

40 of 54

6.1.1.​ DHT Sensor

The sensor selected for the wireless sensor node was a DHT11 temperature and
humidity sensor. The sensor was wired up to the Arduino and a preliminary sketch
was developed to test the sensor readings and ensure the sensor responded to
changes in its environment.

41 of 54

42 of 54

6.1.2.​ WSN to BS Communication

The wireless sensor node (WSN) and base station (BS) communicate via their
respective Xbee devices. There are various LEDs included within the WSN and the
Xbee interfaces which were used as indicators for the communication process (see
Table 3). The data received by the BS was also checked to ensure that it matched
the data transmitted by the WSN.

Figure 27 - Base Station and Wireless Sensor Node

Table 3 - XBee Shield Indicator LEDs (Sparkfun, 2018)

43 of 54

44 of 54

6.1.3.​ RPi Socket Control

A third-party library is utilised for issuing the various socket on/off commands. The
socket codes discovered during the sniffing exercise were tested to ensure each of
the sockets responded as expected.

Figure 28 - Sockets Plugged in for Testing

Figure 29 - RPi with 433MHz Transmitter & Receiver

45 of 54

Figure 30 - Issuing Socket Commands Using 433 Utils Library

46 of 54

6.2.​ BLACK BOX TESTING

A number of black box tests were carried out to ensure that the system functioned as
a whole and that the UI provided the following two features:

1.​ An ability to control (on/off) each of the wall sockets

2.​ An ability to view all monitored data.

6.2.1.​ UI - Socket Control

The iOS application was installed on an iPhone 6. Each of the sockets were tested in
turn using the sliders provided on the “Sockets” tab in the application.

47 of 54

6.2.2.​ UI – Sensors

The iOS application was installed on an iPhone 6. The “Sensors” tab was then
tested. The correct sensor was selected and the data gathered from this sensor was
viewed over the previous number of days. Precise times were checked to ensure
that the correct values were given.

Figure 31 - Sensors Tab & Data

48 of 54

49 of 54

7.​ EVALUATION & CONCLUSION

As outlined in the introduction of this report, the project objectives were as follows:

1.​ Wirelessly monitoring an environmental condition within my house

2.​ Controlling a number of wall sockets within my home (on/off)

3.​ Providing a user interface to allow me to view the monitored data and control

the sockets.

Each of these three objectives were successfully achieved.

The wireless sensor node is used to wirelessly monitor the temperature and humidity
conditions within the office of my home. This sensor can easily be moved to another
location or room to record the environmental conditions there.

The base station is successfully able to control a number of wall sockets within the
home by issuing 433MHz RF signals with the corresponding on/off codes. Each of
the five sockets included can be turned on or off by the base station.

The iOS app achieves the third and final objective of providing a user interface to
view the monitored data and control the sockets. The app includes two tabs. The first
tab is for controlling the sockets and the second tab is for viewing the monitored
data.

Each of the tests that were carried out on the system passed. In addition, at the time
of writing this report, the system had been live for approximately one month and had
successfully gathered data without error. Not only is this evident when viewing
historic data within the app, but it can also be seen by viewing all of the recorded
sensor readings in the database json file included with this submission.

For the above reasons, one can conclude that the overall project was a success.

50 of 54

8.​ FURTHER DEVELOPMENT

Although the overall project was a success, there’s certainly room for further
development.

As mentioned within the Introduction of this document, the scope of this project was
limited and was to establish proof of concepts for two broad objectives:

1.​ Monitoring

2.​ Control

Over time, the system may evolve to include additional monitored points or additional
systems for control.

By using an Arduino within the wireless sensor node, the only limitation to what can
be sensed is the number of pins available, of which there are plenty of both digital
and analogue available. Additionally, entirely new wireless sensor nodes can easily
be included due to the use of XBee devices which establish a ZigBee network. The
XBee device on the base station acts as the coordinator over any routers or end
devices included. It’s just a case of configuring any additional XBee devices
accordingly.

The exact same architecture could be used for a wireless node which controls
something rather than senses something. By simply including an actuator or relay (or
whatever device is required), instructions could be wirelessly transmitted from the
base station for the Ardunio in the wireless node to implement. The implication of this
would be that the wireless node would have to be awake and ready to receive
instructions, so there would be a power consumption implication. The increased
power requirements could be minimised however by various means (such as
synchronising the transmission of instructions to particular times etc.).

Additional radio-controlled wall sockets could easily be included too.

Rather than hardcoding the socket on/off codes in the base station’s program, it
would be better to include this information within the sensorMeta node of the
database. The program could then utilise arrays and automatically parse the
information available in order to control any number of sockets. This would make
adding or removing sockets much easier in the future.

51 of 54

9.​ BIBLIOGRAPHY

Carr, D. & Zemouri, S., 2018. Sensors. Dublin: National College of Ireland.

DIGI, 2016. Wireless Connectivity Kit Getting Started Guide. [Online] ​
Available at:
https://www.digi.com/resources/documentation/digidocs/pdfs/90001456-13.pdf#page
131​
[Accessed 03 08 2018].

DIGI, 2018. XBee/XBee-PRO S1 802.15.4 (Legacy). [Online] ​
Available at:
https://www.digi.com/resources/documentation/digidocs/pdfs/90000982.pdf​
[Accessed 03 08 2018].

gpbl, 2018. SwiftChart. [Online] ​
Available at: https://github.com/gpbl/SwiftChart​
[Accessed 03 08 2018].

Ninja Blocks, 2018. 433 Utils. [Online] ​
Available at: https://github.com/ninjablocks/433Utils​
[Accessed 28 07 2018].

niolabs, 2018. python-xbee. [Online] ​
Available at: https://github.com/niolabs/python-xbee​
[Accessed 03 08 2018].

Rapp, A., 2016. xbee-arduino. [Online] ​
Available at: https://github.com/andrewrapp/xbee-arduino​
[Accessed 03 08 2018].

Sparkfun, 2018. XBee Shield Hookup Guide. [Online] ​
Available at: https://learn.sparkfun.com/tutorials/xbee-shield-hookup-guide​
[Accessed 03 08 2018].

52 of 54

10.​ APPENDIX

The documents listed below were included with this report in the zipped project
submission folder. The file names/folders are numbered as they appear in the
following list:

File Name Type Description

1 Project Report Proposal PDF The initially submitted document

2 Requirements Specification PDF The initially submitted document

3 Project Analysis & Design PDF The initially submitted document

4 Testing PDF The initially submitted document

4a Testing XLSX The excel workbook with each of the
test cases.

5 Project Planner PDF The project management Gantt Chart
complete until week 11.

6 Project Log PDF The initially submitted document.

7 Github Clone – WSN Folde
r

A clone of the wireless sensor node’s
Github repository

8 Github Clone – Base Station Folde
r

A clone of the base station’s Github
repository

9 Github Clone – iOS App Folde
r

A clone of the iOS app’s Github
repository

10 Database Export JSON

The Firebase real-time database
exported as a JSON file. Note that
this file includes all of the gathered
data (at the time of export).

11 Base Station Log Files Folde
r

Some of the archived log files
produced by the Main.py program
running on the base station.

53 of 54

11.​ GITHUB REPOSITORIES

The Github repository links for this project are provided below.

The sketch developed for the Wireless Sensor Node’s Arduino is available at the
Github repository below:

The python program developed for the Base Station is available at the Github
repository below:

The source code for the iOS application is available at the Github repository below:

54 of 54

