SOCKETS & SENSORS - TECHNICAL REPORT

National College of Ireland
Higher Diploma in Science in Computing
Internet of Things Online Stream Sep 2017

Name: Richard Seaman

Student Number: 17119111

Email x17119111@student.ncirl.ie
Supervisor Josephine Andrews

1 of 54

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 5
2. INTRODUCTION 6
2.0, BACKGIOUNG.......coneeieieeeee ettt ettt et ettt ettt ettt et ettt e s ate e eate e s ate e st e e s st e sateesseesaunaenseeenns 6
B Yoo =3 A V] (ISR 6
2.3. TECHNOIOGIES & RESOUICES.....ceevieeeeieeeiee e eeeeeeee e e e e e ettt e e e e e e e ettt e e e eeasstssseaaaaeesesssssasaaasseasssssssasaaaaaias 6
2.4. Assumptions / CONSEIAINTS / SEANAAIUS............ccveeeeeeireeeceeeieeeeeeeeteeeeeeetteeeesesteeeseeseseeeiressessesreseasaeeses 8
3. REQUIREMENTS 9
3.1, FUNCEIONGI ROQUIFEIMENTS.........veeeeeeeeeeeieeeeeee et e e ettt eeeaa e et a e et a e et e e e e tseaaeastseaessssaeesstssesassesennsnees 9
3.2. NON-FUNCLIONGAI REQUITEIMENTS.ccceeveeeeeieeeesieeeeeee e e et e e s e e e e tteeeeastaa e s saeaeasssesaesasseaessseasasssseasssnsees 12
4. DEesIGN & ARCHITECTURE 14
5. IMPLEMENTATION 16
5.1. Backend (DAtADASE DESIGN).........ccccuueeeeeeeeeeeeiee e e eseeeestta e e ettt e e s stta e e sttt s esasseaessssaessaseseesanseaeeansenaaas 16
O 1 o 1B Ye Yol (=3 XTSI 18
5.3, WirelE5S SENSON INOGE. ...ttt e e e e et ettt e e e e e s et e e e e e eaesissesaaaseeessssssssesasassesssnsses 22
R 1o LY =30 (o | 1 o S PPNt 26
5.5, XDEE DEVICES & NELWOIK.......ovevieeeeeieeie e et e e e e ettt e e e e e ettt eae e e e e e ettt aaaaaeseassttssaaaaaeesssssssssaaaaesas 30
5.6. Graphical User INterface (I0S ADD)........uee et ee et ettte e ettt e e et a e et ttaaeestsa s e e sssaaesstsaaaesssesennses 33
6. TESTING 40
6.1, WHITE BOX TESTING. ...cccueteeeeetieeeeeee et te e ettt e e ettt e ettt e e ettt e e eatsaaasasasaeastseaeaasssaaeassssaeastssesessessssssenaans 40
6.2. BLACK BOX TESTING. ...cc..eeeeeeteeeeeetee e eeeee e eee e ettt e et tea e ettt e e e staaeeaastaaeaasseaaessssaaesanseaaaansssassssseasssssenanaas 47
7. Evaruation & CONCLUSION 50
8. FURTHER DEVELOPMENT 51
9. BIBLIOGRAPHY 52
10. APPENDIX 53
11. GITHUB REPOSITORIES 54

2 of 54

TABLE OF FIGURES

Figure 1 - Use Case Diagram

Figure 2 - Project Overview

Figure 3 - Root Nodes

Figure 4 - Sensor Node

Figure 5 - Sensor Meta Data Node

Figure 6 - Sockets Node

Figure 7 - RF Wall Sockets & Remote Controls
Figure 8 - RPi with 433MHz transmitter and receiver
Figure 9 - "Sniffing" the Socket Codes

Figure 10 - Socket Positions

Figure 11 - Architecture of a Sensor Node (Carr & Zemouri, 2018)
Figure 12 - Sensor Node Wiring Diagram

Figure 13 - WSN Design

Figure 14 - WSN Actual

Figure 15 - Base Station Architecture

Figure 16 — RPi Wiring Diagram

Figure 17 - Base Station Design

Figure 18 - Base Station Actual

Figure 19 - Initial Testing of Serial Communication Between XBee Devices
Figure 20 - API Mode: frames

Figure 21 - Xbee Device Network Configuration
Figure 22 - Sockets Tab

Figure 23 - Keyboard and RPi Sync Error

Figure 24 - Sensors Tab (Selector)

Figure 25 - Sensors Tab (Data)

Figure 26 - Temperature Data & Loading Screen
Figure 27 - Base Station and Wireless Sensor Node
Figure 28 - Sockets Plugged in for Testing

Figure 29 - RPi with 433MHz Transmitter & Receiver
Figure 30 - Issuing Socket Commands Using 433 Utils Library
Figure 31 - Sensors Tab & Data

LIST OF TABLES

Table 1 - Socket Codes
Table 2 - XBee Device Configuration
Table 3 - XBee Shield Indicator LEDs (Sparkfun, 2018)

3 of 54

10
15
16
16
17
17
18
19
20
21
22
23
24
24
26
27
28
28
30
31
32
34
35
36
37
38
43
45
45
46
48

20
32
43

GLOSSARY OF TERMS

Term Definition

loT Internet of Things

RPi Raspberry Pi

HAT Hardware Attached on Top

RF Radio Frequency

SSH Secure Shell

IEEE The Institute of Electrical and Electronics Engineers

i0S ﬁ]gwobile operating system created and developed by Apple

JSON JavaScript Object Notation

Epoch Time T.he Unix epoch is the numb_er of seconds that have elapsed
since January 1, 1970 (midnight UTC/GMT)
An integrated development environment for macOS containing

XCode a suite of software development tools developed by Apple for
developing software for macOS, iOS, watchOS, and tvOS.

XBee A radio module provided by Digi International.

DHT Sensor ﬁ\urri?(;jii?l_ available sensor which senses temperature and

I/0 Input / Output

IDE Integrated Development Environment

X Transmitter

RX Receiver

XCTU A software package provided by DIGI for configuration of their

Xbee devices.

4 of 54

1. EXECUTIVE SUMMARY

This report outlines the final project of the Higher Diploma in Science in Computing,
Internet of Things Stream. The project is called “Sockets & Sensors”. The project
addresses two broad topics related to building services engineering; monitoring
internal environmental conditions and controlling systems. These topics are
addressed in the context of a single domestic home.

The project has three main objectives. The first is to wirelessly monitor
environmental conditions and record them over time. The second is to facilitate the
remote control of a number of electrical wall sockets. The third and final objective is
to provide a user interface in order to view the monitored data and to control the
sockets.

A system is designed to achieve these objectives. The system consists of five main
components; a back-end service, a base station, a wireless sensor node,
radio-controlled wall sockets and a user interface in the form of an iOS application.
The design and implementation of each of these components, and how they operate
as a whole, is discussed in detail. A broad range of hardware devices are utilised
within the system including a Raspberry Pi, an Arduino, Xbee modules, electronic
components (LEDs, resistors, sensors etc.) and an iOS device. Similarly, multiple
programming languages are utilised including Python, C/C++ and Swift.

Individual system components and the system as a whole are tested in turn. Each of
the tests are successful and the system operates seamlessly as a whole. At the time
of writing this report, the system had been gathering data and controlling wall
sockets for approximately one month without issue.

The project achieved the three project objectives and provided a proof of concept for

both monitoring environmental conditions and controlling systems. The resulting
system can easily be scaled to cater for additional use cases.

5 of 54

2. INTRODUCTION

This document is the technical report submitted for the final project module of the
Higher Diploma in Science in Computing, Internet of Things Stream. The title of this
project is “Sockets & Sensors”.

This report begins by introducing the project including its background and aims. The
various functional and non-functional requirements are then outlined. The overall
design and architecture of the system used for the project is described and a
detailed outline of the implementation of each of the main system components is
then given. The methods used to test the system are provided before a final
evaluation and conclusion is drawn.

2.1. Background

As a building services engineer, | am very interested in energy use and internal
environmental conditions within buildings. When analysing these two topics, it is vital
to be able to monitor and control the various systems and environments within the
building.

| decided to base my project on a system which would allow me to monitor and
control various things within my own home.

2.2. Scope/Aims

With the limited time available, | was eager to contain the scope to something
achievable. | decided to try and include a single monitoring component and a single
control component. The logic being that if | could achieve this, | could easily add onto
the system in the future.

The scope of this project is to develop a system that is capable of:

1. Wirelessly monitoring an environmental condition within my house
2. Controlling a number of wall sockets within my home (on/off)
3. Providing a user interface to allow me to view the monitored data and control

the sockets.

| was also keen to move away from just using a single Raspberry Pi and | particularly
didn’t want to use the GrovePi HAT. | wanted to explore other IoT hardware and
remove the constraints of the GrovePi system.

2.3. Technologies & Resources

A range of hardware, software and network resources were required for this project,
including the following:

6 of 54

Hardware

e Raspberry Pi: for the base station (3 Model B V1.2 was used)

e Arduino: for the sensor node (an Uno was used)

e XBee x2: for communication between base station and sensor node (Series 1
modules were used)

e 433MHz Transmitter: for 433MHz communication between base station and
wall sockets

e 433MHz Receiver: for “sniffing” the 433MHz RF codes from the remote
controls that came with the sockets.

e DHT11 Sensor: to allow the sensor node sense it's environment (temperature
and humidity)

e iPhone: for the user interface

e RF Wall Sockets: for RF control (on/off) of appliances connected to the
sockets.

e Electronic Components: LEDs, resistors, jumper wires, breadboard

Software

e Libraries:
o 433Utils: for communicating over 433Mhz RF (Ninja Blocks, 2018)
o Xbee-arduino: for using the XBees in an Arduino sketch (Rapp, 2016)
o python-xbee: for using the Xbee devices in a python program (niolabs,
2018)
o SwiftChart: for graphing data in the iOS app (gpbl, 2018)
e XCode: for developing the iOS application
e Arduino IDE: for developing and loading the sketch for the ardunio
e XCTU: for configuring the Xbee devices and network

e Firebase: for a back-end service

Network

e WiFi: A home wifi network, with internet access, is required to access the
back-end services. It's also required to allow remote access into the base
station (over SSH).

7 of 54

e ZigBee (2.4GHz): for communication between base station and sensor node

(and future sensor nodes).

® 433MHz: for control of wall sockets.

2.4. Assumptions / Constraints / Standards

There are a number of assumptions in this project:

e | will be the only user
e | will have an iOS device available to load the app onto.
e There will be no need to publish the iOS to the AppStore. Instead, it will be

loaded directly onto the device using XCode.

There are a number of constraints in this project:

e The base station must be powered up and running the relevant program in
order for the project features and functionality to be available.

e The base station must have internet access at all times in order to check
socket statuses and upload sensor readings

e The base station and wireless sensor node must not exceed the range of their
respective XBee devices. For the average home, this will not be an issue.

e There is no caching/buffering at the wireless node. If the signal is lost, or not

received by the base station, the data will be lost.

The IEEE 802.15.4 standard is utilised by the XBee devices used within this project.

8 of 54

3. REQUIREMENTS

There have been no changes to the project requirements since the initial submission.

3.1. Functional Requirements

| will be the sole user of this system. There will be no external users.
The end user requirements of this system align with the three items identified within
the project scope:

1. An ability to wirelessly sense whatever condition | like, from anywhere in my
home.

2. An ability to control (on/off) a number of wall sockets within my home

3. An ability to view the monitored data and control the sockets using my iPhone,

from anywhere with internet access.

3.1.1. System Requirements (Use Case Diagram)

A use case diagram for the system is provided in Figure 1. Each of the use cases
represent an end goal of the system and are in the format “Verb-Noun”. The three
actors identified are; Home Owner, Database Administrator and Installer / Developer.
In practice, each of these roles will be undertaken by one person (myself).

9 of 54

Sockets & Sensors System

Turn onfoff socket

View Monitored Data

Home

Chwner Relocate Sensor

Mode

Relocate RF
Wall Socket

Modify Gathered Data

Database
Administrator

Add RF
Wall Socket

Add Sensor

Modify Wireless
Sensor Mode

Figure 1 - Use Case Diagram

10 of 54

Installer [Developer

3.1.2. Requirement — Turn On / Off Socket
The use case “Turn on/off socket” is described in detail below.
Scope

The scope of this use case is for the home owner to turn on or off one of the RF
controlled wall sockets.

Description

This use case describes the control of an RF controlled wall socket by the home
owner.

Flow Description

Precondition

e The home owner has access to the iOS app and has been authenticated.
e The device with the iOS app installed on it has internet access.

e The wall sockets are plugged into various wall outlets around the house.

Activation

This use case starts when the home owner navigates to the “Sockets” tab within the
iOS app.

Main flow

e The user navigates to the Sockets tab within the app.

e The RPi has recently synced with the back end (A1).

e The user decides to turn on/off a particular socket and switches the
corresponding socket’s switch.

e The app updates the socket status on the back end.

e The base station detects a change on its next sync.

e The base station issues the RF signal with the corresponding code to turn
on/off the socket.

e The wall socket turns on/off.

Alternate flow

e (A1 —RPihasn’t synced recently)
e The user interface for the sockets tab is disabled, preventing the user from

attempting to turn on/off a socket.

11 of 54

e The user is presented with an error message.

e The user is unable to turn on/off the socket.

Exceptional flow

Termination

The app’s user interface is updated accordingly and the system awaits further
commands.

3.2. Non-Functional Requirements

The project includes a number of non-functional requirements, as detailed below.

3.2.1. Availability Requirement

There is an availability requirement for this project. The wireless sensor node and
base station must be simultaneously available in order to successfully gather and
record data. The base station must also be available for issuing on/off commands to
the RF sockets.

If the base station or wireless sensor node fail at any time, the system will cease to
function.

3.2.2. Reliability Requirement

There is a reliability requirement for this project. As with most loT devices, they must
be capable of operating for long periods of time with limited or no human interaction
required.

Any hardware must therefore be durable and capable of withstanding the
environments in which it will be installed. Software must be capable of handling
errors while continuing to operate. For example, sensors may occasionally read
strange readings which if unhandled, could cause the system to crash.

3.2.3. Security Requirement
There is a security requirement for this project. The monitored data is considered
confidential. It should not be able to be viewed by anybody other than the intended

user of the application.

The control of the sockets must also be limited to the intended user, otherwise
anybody could switch on / off electrical items within the house.

12 of 54

This requirement was upheld by using Firebase Authentication. A single user is
assigned permission to use this project (a specific Gmail address, signed in using
Google’s authentication).

3.2.4. Backup Requirement

There is a requirement to back up the data in the database. The database is the only
place where the historic gathered data is recorded. If the database was to be
deleted, all of the data would be lost. A more likely scenario, would be an entire node
within the json tree being accidentally removed either within the Firebase console, or
accidentally during the source code development.

Fortunately, Firebase automatically runs a daily back which includes real-time
databases and users. In addition, the real-time database can be manually exported
as a json file at any time (which was done periodically during the development
process).

13 of 54

4. DEsiGN & ARCHITECTURE

This project involves a range of devices and technologies. Please refer to Figure 2
which provides an overview of the project, broken down into five main components.

Back End

Firebase is used for the backend of the project. The Firebase services required for
this project are the real-time databases and authentication, both of which are
available within its “Spark Plan” (free tier). The real-time database is used to store
the sensor data and the desired status of each wall outlet. The real-time aspect of
the service means that as soon as the base station uploads a reading, it will be
available for the user interface. Similarly, as soon the desired status of a wall socket
(on/off) is changed on the user interface, the status will be available to the base
station. The authentication service will ensure that access is kept (sufficiently)
secure.

Base Station

A Raspberry Pi, Xbee device and 433MHs transmitter and receiver are used as the
base station, which is responsible for:

Listening for data from the sensor node

Uploading sensor data to the back end

Querying the back end for changes in the desired power outlet statuses.

Transmitting on/off commands to the power outlets

A python script was created for the application logic and runs on an infinite loop on
the RPi. The base station (Xbee) and sensor node utilise the IEEE 802.15.4
standard for communication (2.4GHz). The base station and wall sockets
communicate using Radio Frequency in the 433MHz frequency band.

Sensor Node

An Arduino Uno, Xbee device and sensor circuit are used as the sensor node, which
is responsible for:

e Taking sensor(s) readings at set intervals

e Transmitting the data to the base station

A sketch (Arduino program) was created for the application logic and runs on an
infinite loop on the Arduino.

User Interface

An iOS application was developed for the user interface of the project and is
responsible for:

e Viewing historic and real time data from the sensors

14 of 54

e Setting the status of the wall sockets.

RF Wall Sockets

Simple radio frequency-controlled wall sockets were used to switch the power supply
on or off to a number of household appliances (when a transmission is received from
the base station).

BackiEnd

RFE Well

Figure 2 - Project Overview

15 of 54

5. IMPLEMENTATION

This section describes how the five main components of this project were
implemented.

5.1. Backend (Database Design)

A Firebase real-time database is used in this project. A Firebase real-time database
is structured as a single JSON tree. For this project, three root nodes are used;

LEE 11

“sensors”, “sensorMeta” and “sockets”, as shown in Figure 3:

home-automation-project-fa23c
n sensorMeta
u sensors

ﬂ sockets

Figure 3 - Root Nodes

The sensors root node holds all of the data corresponding to the sensors, including
any gathered data. Figure 4 highlights the structure of the sensor node.

- Sensors
5. 1530725202
. humidity: 49
------- temperature: 2€

» timestamp: "26818-87-84:18-26-4.

Figure 4 - Sensor Node

As there could potentially be multiple sensors included, the direct child nodes
correspond to particular sensors. In the example provided, the “dht’ node contains all
of the data gathered from the DHT11 sensor on the wireless sensor node. If an
additional sensor was included, its data would be contained in a separate child node.

As all of the gathered data is time series data, the key used for each entry is a
timestamp (epoch time in seconds). For each timestamp, a human readable time
(string) is provided alongside whatever data was gathered. In the example provided,
both temperature and humidity readings were recorded.

The sensorMeta root node holds the meta data (non-time series data) for each of the
sensors. Figure 5 highlights the structure of the sensorMeta node.

16 of 54

--- sensorMeta

). dht

------- dataKeys: "humidity, temperatur
------- dataUnits: "%, C’

------- display: "DHT11 - Temp & Humidit

------- location: "Office

Figure 5 - Sensor Meta Data Node

This meta data is required for the iOS application to successfully parse the time
series data and to initially display the list of available sensors. Each of the dataKeys
are used when parsing the time series data (note that they correspond to the keys in
Figure 4). The dataUnits are used when updating the y-axis units on the graphs. The
display and location values are used on the sensor selection screen.

The sockets root node holds all of the data corresponding to the sockets, including
the desired status (on/off) of each. Figure 6 highlights the structure of the sockets
node.

=) sockets

.. forceUpdate: 8

=) rpiLastCheck

... time: 153886924

.. timeReadable: "26818-87-86:18-27-21
|- socket1

.. display: "Sitting Room Ligh
. number: 1

- status: 1

=|-- socket2

.. display: "Bedroom Light

- number: 2

- status: 1

Figure 6 - Sockets Node

A child node is provided for each socket. Each of these nodes contain the display
name (as it appears in the app), the socket number (the physical number on the
device) and the desired status (1 = On, 0 = off) for their respective socket. An
“rpiLastCheck” node is also provided. This node is where the last sync time of the
base station is recorded. This enables the app to disable the Ul if the base station
hasn’t synced recently.

A json export of the database was submitted along with this report.

17 of 54

5.2. RF Wall Sockets

The radio frequency-controlled wall sockets used in this project are readily available
from various suppliers. A socket pack, consisting of five RF sockets and two remote
controls was purchased for use in this project. The remote controls can be used to
turn on or off each of the sockets.

Vi \
/1 I
.
£
Eniol g y
Vm m
on ® oFf
®® g
®:® /m
®® = W
®-® -
OES®) e 1
)
&Ewmscow‘ﬁ'

Figure 7 - RF Wall Sockets & Remote Controls

5.2.1. “Sniffing” the RF Codes

The remote controls which come with the sockets are pre-programmed with the
correct codes for turning on or off each socket. The remote controls have a 433MHz
transmitter and each socket has a 433MHz receiver. When a button is pressed on
the remote control, a 433MHz signal is transmitted with a code which corresponds to
the socket number and command of the button pressed (e.g. socket 1, on). Each
socket will receive the transmission, but only the socket whose on/off code matches
the transmitted code will turn on/off its power.

In order to control the sockets from another 433MHz transmitter (i.e. one attached to
the base station), it is necessary to determine what the codes are for each
command. One method of doing this is to run a program which uses a 433MHz
receiver to listen, or “sniff’, for transmitted signals. Once the program is running,
each button on the remote control can be pressed in turn and the corresponding
code for each can be detected and recorded.

18 of 54

A program from a third-party library (Ninja Blocks, 2018) was used for sniffing the
codes. The library was installed on the RPi and a 433MHz transmitter and receiver
(complete with attached antennas) were connected to the RPi.

Figure 8 - RPi with 433MHz transmitter and receiver

The program was run from the command line and each of the buttons on the remote
control were pressed in turn. When the program received a transmission, the code
was printed out to the command line, as shown in Figure 9. These codes were
recorded for later inclusion in the Base Station’s application logic.

19 of 54

pi@richardsrpi: sudo ./RFSniffer
Received 4308444
Received 4308436
Received 4308436
Received 4308442
Received 4308442
Received 4308434
Received 4308434
Received 4308441
Received 4308441
Received 4308433
Received 4308433
Received 4308445
Received 4308437
Received 4308437
Received 4308443
Received 4308443
Received 4308435
Received 4308435
Received 4308435

Figure 9 - "Sniffing" the Socket Codes

The codes discovered from this exercise are provided in Table 1.

Table 1 - Socket Codes

Socket On Code Off Code
1 4308444 4308436
2 4308442 4308434
3 4308441 4308433
4 4308445 4308437
5 4308443 4308435

20 of 54

5.2.2. Positions of RF Wall Sockets

The sockets can be used to control the power to any electrical item that plugs in to a
standard wall socket. This provides great flexibility as the same RF wall sockets can
be moved from one room to another depending on what appliance / item needs to be
controlled.

Figure 10 shows the layout of my house. The current position of each socket is
identified by the small purple icons with an adjacent number, which corresponds to
the socket number.

Socket 1 and socket 5 in the Living Room control a plug-in light and the
entertainment devices (TV, PS4, Sky Box) respectively. Multiple devices are
controlled by socket 5 as they are all powered from a single extension lead. Socket 2
in the bedroom controls a plug-in light. Socket 4 in the office controls the power to
multiple screens and laptop chargers (again through an extension lead). Socket 3 in
the kitchen is currently not used to control anything.

N 4
) BATH =
B ROOM OFFICE
BEDROOM — — BEDROOM
/ -
f/-_ \\\
T i
8 _ 8, \‘
.
LIVING ROOM / KITCHEN
L
5
B

Figure 10 - Socket Positions

21 of 54

5.3. Wireless Sensor Node

The wireless sensor node (WSN) used in this project is responsible for gathering the
environmental data and transmitting it back to the base station.

5.3.1. Architecture

The architecture of a sensor node is shown in Figure 11. Rather than attempting to
build a sensor node from scratch, an Arduino Uno was used to provide the micro
controller, analogue to digital converter and external memory components. In
addition, an Arduino can easily be powered from a standard socket (or battery) and
an integrated development environment (IDE) is available for developing and loading
the “sketches” (programs) onto it. In this case, the power supply is via USB from a
standard wall socket. Finally, the Xbee device acts as the transceiver, although it is
only required for transmission in this application. The Xbee devices and network are
discussed in greater detail in section 5.5.

Transceiver

Sensor 1

Micro-controller

221N0S J2MOd

T ¢ Sensor 2

External Memory

Figure 11 - Architecture of a Sensor Node (Carr & Zemouri, 2018)

5.3.2. Design & Implementation

The large number of /O pins on the Arduino provided great flexibility and meant that
multiple sensors and/or indicators could be included. The final design included a
single DHT11 temperature and humidity sensor and three LEDs. A red LED was
used to indicate an error, a green LED was used to indicate success and a blue LED
was used to indicate activity. Figure 12 shows the wiring diagram between the
Arduino and the sensor and LEDs.

22 of 54

DHT11

‘ ‘ a £ T o
a < 2 Z
>) = 0
R
— — 2200
- | Arduing II
S Una R1
(Riev3) Red LED (Error) 2200
_— — > WW—¢
] Y
R2
Blue LED (Status) 2200
>l VWA—¢
S
R3
Green LED (Success) 2200
>l VWA—¢
S

Figure 12 - Sensor Node Wiring Diagram

In order to interface the Xbee with the Arduino, a shield is used. A shield is simply a
modular board which is plugged in on top of the Arduino in order to extend its
capabilities. In this case, the shield provides a seat for the Xbee device, Xbee
indicator LEDs (useful for troubleshooting / testing), a breakout space and replicates
all of the 1/0O pins and the reset button from below.

Figure 12 and Figure 13 show the design of the WSN and the actual WSN
respectively. Jumper wires were used for all connections.

23 of 54

Xbee Device

Breadboard

DHT
Sensor

XBee

[
ST R T [_ 1= an9
I O))ans S | |: o anNg
e
A

AETE+

LEDS ——

L3¥

f
Y

® & & & 0 0 & & 0 0 0 0 0 0 0 0000000000

noa soIa

Xbee Shield

ISSY NIQ |

Arduino
Under
Shield

Figure 13 - WSN Design

- s
fasmm g

Xbee
Indicator
LEDs

L]
LI
L]
L
L

+ Emmnw

uUSB
power
supply

Figure 14 - WSN Actual

24 of 54

5.3.3. Arduino Sketch

A sketch is a block of code (program) that is uploaded to and run on an Arduino. The
Arduino language used in a sketch is merely a set of C/C++ functions, which are
passed to a C/C++ compiler.

Every sketch must contain two special functions; setup() and loop(). The setup()
function is called once, and as the name implies, is used for setup tasks and
initialisation. The loop() function is called over and over again once the setup()
function has run.

For this project, the setup() function is used to set the various pin modes, set the
serial baud rate and initialise the Xbee object (Rapp, 2016). The loop() function then
continuously takes readings from the sensor and attempts to transmit them to the
base station. The various LEDs are used throughout the loop as indicators. An
artificial delay is added at the end of the loop to limit the number of sensor readings
taken.

The sketch developed for this project is available at the Github link below. It was also
submitted together with this report.

t ' hitpsMgithub. com'Richard-Seaman/FinalProject-Arduing

25 of 54

5.4. Base Station

The base station (BS) used in this project is responsible for:

e receiving data from the wireless sensor node and uploading it to the back end
e checking the back end for socket status changes and transmitting the

relevant on/off socket commands

5.4 1. Architecture

Figure 15 shows the architecture used for the base station. An internet connected
computer is used as the main computational platform. A 433MHz transmitter (TX)
and receiver (RX) are used to enable radio communication on the 433MHz
frequency band. An Xbee is used to allow access to (and coordination of) the Xbee
network.

433MHz 433MHz
™ RX

¥

XBee

I:> Internet Connected Computer Coordinator

&4

Power Supply

Figure 15 - Base Station Architecture

5.4.2. Design & Implementation

A Raspberry Pi (RPi) 3 Model B V1.2 is used as the base station’s internet
connected computer. A generic 433MHz transmitter and receiver are used for
transmitting and receiving 433MHz radio signals. Antennas were soldered to both
the TX and RX in order to improve performance. An Xbee Series 1 complete with
explorer dongle (USB interface) is used as the Xbee coordinator. Figure 16 shows
the wiring diagram for the RPi’s /O pins.

26 of 54

GND

RX
LINK
RF DATA

_— 1 ANT +5V

GND

DATA
TX
RF LINK

==T""] ANT 45V

GPIO2 SDAL 12C

GPIO3 SCL1 T2C

GPIO21

GPIO20

GPIO4 Raspberry Pi 3 GPIO16

GPI027
GPI022
GIPO10 SPIO_MOSI

GP109 SPI0_MISO

GPIO1

ID_SC I2C ID EEPROM

GND

GPIOY 5PI0_CE1_N
GPIOE 5PI0_CEO_N
GPIO25

GPIO24

GPIO23

GPIO18 PCM _CLK
GPIO15 UARTD RXD

GPIO 14 UARTO_TXD

Figure 16 — RPi Wiring Diagram

Figure 17 and Figure 18 show the design of the base station and the actual base

station respectively. Jumper wires were used for all connections.

27 of 54

FS1000A

RPi 3 Mode!

Xbee

ey P 2015 Coordinator
and Explorer
Dongle

=
=
_
o
1z
“
=
o
1%
&

(VY¥3UYD) IS
ETHERNET

Antenna
Soldered
On

“C" for
Coordinator

C: 20853-RP132

Hom

Figure 18 - Base Station Actual

28 of 54

5.4.3. “Main.py” Program

A single “Main.py” python program was written which contains all of the base
station’s application logic.

One of the first things the program does, is create a log file. Any existing log files are
timestamped and archived before a new log file is created. This log file allows
important events or errors to be logged, which is invaluable during the development
process. Having the log file as a separate file also allows it to be tailed while SSH’ed
into the RPi. A number of these log files were included in this submission as
examples.

The program authenticates itself using the hardcoded credentials provided and
creates a persistent reference to the real-time Firebase database. This enables it to
both read from and write to the database.

A serial port is opened to the Xbee device and an Xbee object is created (niolabs,
2018). This Xbee object provides an API for any communication to/from the Xbee
network. For this project, the Xbee is only expected to receive transmissions from
the WSN. When a transmission is received, the Xbee object calls a designated
callback function on a background thread. In this case, the callback function handles
the processing and uploading of the data received.

Each of the RF socket on/off commands are hardcoded into the program. The socket
statuses are queried from the database and the corresponding commands are
issued. A third-party library (Ninja Blocks, 2018) is utilised for issuing 433MHz RF
signals. The program enters a continuous loop and periodically queries the database
for changes to the socket statuses. If a change is found, the corresponding signal is
issued.

Any signal interrupts are handled and the program gracefully exits.

The python program developed for this project is available at the Github link below. It
was also submitted together with this report.

O https-ffgithub. com/Richard-SeamandFinalProject-Fpi

29 of 54

5.5. Xbee Devices & Network

The Xbee devices and network represent one of the most difficult aspects of this
project. The devices and configuration software have a very steep learning curve
and the supplier’'s documentation only cover generic use cases (DIGI, 2018). That
being said, once the system is understood and implemented correctly, it becomes
incredibly powerful with a vast range of possible applications.

At a very high level, Xbee devices operate in two main modes; transparent mode
and API mode.

5.5.1. Transparent Mode

Transparent mode is the default operating mode. Xbee devices can actually
communicate with each other straight out of the box, using transparent mode. The
device acts as a serial line replacement when it is in this mode. Essentially, any RF
data it receives, it transmits back out. The data passes through the device, which
assumedly is where the name came from.

Figure 19 shows the initial testing of the Xbee devices in transparent mode. The
window on the left is the Serial Monitor of the Arduino IDE (Xbee and shield
connected to Arduino) and the window on the right shows the “XCTU” software
provided by DIGI for configuring the devices (Xbee dongle connected to Macbook).

& Grab File Edit Capture Window Help B p &) 100% B Fi2057 Q=

Send :
‘ - ® & mEco kA2 B
ron ¥ -
Pl &) | © @ O TaBytes: 34
OTR ATS BRK P Bytes: 21
Closo Rocord Datach
Consola og 20000
test 74 65 73 74 0D
Hello from XBee on 48 65 6C 6C 6F 28 66 72 6F 6D 28 58 42 €5 65 20 6F 6E 20 40
Vac donglel hear you | 61 63 20 64 6F 6E 67 6C 65 49 28 68 65 B1 72 20 79 BF 75 20
on Ardunio 6F 6F 20 41 72 64 75 6 69 6F
Send packets o Senda single packet
e o
Send seauence
ransmit ntarval (mel:
* Rapaattimes | |
Loop nfritaly
Aut Il d b, q put
ofthe bov altemat - X
iy e, -

Figure 19 - Initial Testing of Serial Communication Between XBee Devices

30 of 54

5.5.2. APl Mode

Application Programming Interface (APIl) operating mode is the alternative to
transparent mode. It is much more powerful, but also much more complicated. When
in APl mode, all data that is received or transmitted by the device is contained within
frames which define operations or events within the module. Frames can include
data frames or command frames, for transmitting data payloads or remote
configuration of devices. Frames also include signal strength, source addresses,
response codes and much more, which is how APl mode is capable of so much
more than transparent mode.

Figure 20 shows the frames log within the XCTU software. In this case, a coordinator
device has received a frame from an end device. The data payload (RF data in the
bottom right of the figure) corresponds to temperature and humidity readings of 18C
and 40% respectively.

a Radio Modules @ @' o E Coordinator - 0013A2004163FDD4

Name: Coo...tor ‘* E ¢
g o O 0O Tx frames: 11
Function: &‘ DTR RTS BRK
Rx frames: 21
. usb...12 Open Record Detach
Frames log O e @ 0 0 Frame details
1 remote modules X L0 Time . gt e neswunise 23
* 9 22:21:4... 4 AT Command Options
Name: * 10 22:21:4.. 18 AT Command Response E
Function: X...4 X * 11 22:21:5.. 5 AT Command Response 00
802 €12 22215 7 RX(Receive) Packet 16-bit... RF data
MAC: 0...C » ina.
13 22:21:5.. AT Command

4
14 22:21:5.. 18 AT Command Response ASCII

* 15 22:21:5.. 5 AT Command Response 40 18

? 16 22:22:0.. 4 AT Command

Figure 20 - API Mode: frames

5.5.3. Device Configuration

The devices were configured in APl mode. The Xbee device for the base station was
configured as the network coordinator. The Xbee device for the WSN was configured
as an end device. Each device was configured to use the same channel and network
ID and a 16-bit source address was designated for each device.

Table 2 provides the final configurations used for each of the devices. Any settings
not included in this table were kept as the default values. Figure 21 shows the
network configuration within the XCTU software, including a network diagram.

Once the devices were configured correctly, the various software libraries could be
used within the base station / WSN programs.

31 of 54

Table 2 - XBee Device Configuration

Description Abbrev. Xbee 1 (BS) Xbee 2 (WSN)
Node Identifier NI Coordinator End Device
Channel CH C C

Pan ID ID 3385 3385

Dest. Addr. High DH 0

Dest. Addr. Low DL 0

16-bit Source Addr. MY 1234 5678

Serial High SH 0013A200 0013A200
Serial Low SL 4163FDD4 4151306C
Coordinator Enable CE Coordinator [1] End Device [0]
Interface Data Rate BD 9600 [3] 9600 [3]

API Enable AP APl enabled [2] APl enabled [2]

: il @

a Radio Modules

Coo...tor
XBE...5.4

= usb...l2
- 00...D4

1 remote modules X

g";

Name:
Function: X...4 X
MAC: 0...C

Stop

» 2 nodes [PAN ID: 3385] [CH: C]
<Initializing scan>

:\.’ Coordinator - 0013A2004163FDD4

Lo JH-H

Tools

Mode Layout Filters

@1003%

0013A200
4151306C

Detach

0013A200
4163FDD4

=" Coordin...

Scan 15 (Remaining: 00:00:05 | Total: 00:02:56)

Figure 21 - Xbee Device Network Configuration

32 of 54

5.6. Graphical User Interface (iOS App)

The graphical user interface is an iOS application. The application was not published
to Apple’s AppStore as there is only one intended user. In fact, making the
application available to multiple users would compromise the confidential information
(monitored data) as well as the control of the wall sockets. For these reasons, the
application must be loaded directly onto each iOS device, through XCode.

5.6.1. Architecture

A tab-based interface is used with two main tabs. The first tab is for controlling the
RF Wall Sockets and the second tab is for viewing and analysing the monitored data.
Using tabs in this manner provides a clean division between the Sockets and
Sensors aspects of the application.

5.6.2. Sockets Tab

Figure 22 shows the socket tab of the iOS app, which provides an interface for
controlling the sockets. There are two main sections included on this tab: “RPI’ and
“Sockets”.

The RPI section provides information on when the base station last synced with the
back end (Firebase). If the time shown is relatively recently, it means that the base
station is available and running the required script for the control of the sockets to
work. If the time shown isn’t relatively recently, it means that the base station is
unavailable (for whatever reason). In this case, a warning will be displayed over the
sockets tab and the interface will be locked, preventing the user from attempting to
control the sockets, as shown in the screenshot on the right of Figure 23.

The Sockets section provides information on each of the available sockets. Each
socket has:

e The socket number (physical number on the socket)

e The display name for that socket, which is user adjustable. This allows the
name to be changed if the same socket is moved from one location to another
or has something new plugged into it. An example is provided in the
screenshot on the left of Figure 23.

e The status switch, which allows the user to turn on or off the socket.

Note that the application parses all of the information from the back end and displays
it accordingly. This means that if sockets are added or removed from the backend,
the sockets shown within the app will automatically be updated.

33 of 54

Carrier &

Last RPI Sync: Aug 4, 2018 at 4:50:13 PM

Socket 1:

Sitting Room Light

Socket 2:

Bedroom Light

Socket 3:

Unused

Socket 4:

Computers

Socket 5:

™

Figure 22 - Sockets Tab

34 of 54

Carrier = 2 | Carrier &

Last RPI Sync: Aug 4, 2018 at 4:50:13 PM
Sockets
Socket 1:

Sitting Room Light

Last RPi Sync Time:
Socket 2: Aug 4, 2018 at 11:24:54 AM

Bedroom Light . . .
Ul disabled until RPi syncs.

Socket 3:

Sackets

Figure 23 - Keyboard and RPi Sync Error

5.6.3. Sensors Tab

The first screen of the “Sensors” tab is shown in Figure 24. This “selector’ screen
allows the user to select a sensor from a list of available sensors. The list of
available sensors is automatically parsed from the database. The sensor meta data
(display and location) are displayed for each sensor. Similarly to the sockets tab, the
location of the sensor is user adjustable.

When a sensor is selected, a new “data”’ screen is displayed which graphs the
available data for that sensor against time. An example of the data screen is
provided in Figure 25. Tapping “Back” on this screen will return to the selector
screen.

35 of 54

Carrier =

DHT11 - Temp & Humidity

Office

it

Sensors

Figure 24 - Sensors Tab (Selector)

36 of 54

Carrier =

< Back
- Aug 4, 2018

70

J&

Sensors

Figure 25 - Sensors Tab (Data)

37 of 54

The data screen graphs any available data for the selected day. The default date
shown is the current day. It is possible to view historic data by using the arrows at
the top left and right of the screen to move back and forward in increments of 1 day
respectively. If the current date is selected, the next arrow (at the top right) is
disabled.

If the selected sensor takes multiple readings (as is the case with the DHT11 sensor
used), a reading selector will be displayed on top of the graph which can be used to
swap between readings. If another reading is selected, the data and y-axis unit and
scale will be updated accordingly. The sensor meta data from the database is used
to achieve this functionality. The screenshot on the left of Figure 26 shows the
alternative temperature readings.

If the value at a particular time is required, the user can tap anywhere on the graph
to make a vertical line appear with the value at that time displayed above it.

As there is potentially a huge amount of data, a loading screen is displayed while the
data is asynchronously fetched from the database. This loading screen is shown in
the screenshot on the right of Figure 26.

Carrier &

¢ Back

T Aug 4, 2018

humidity temperature

Syncing...

Figure 26 - Temperature Data & Loading Screen

38 of 54

5.6.4. Source Code

XCode was used to develop the iOS application for this project.

The source code for this application is available at the Github link below. It was also
submitted together with this report.

‘ ' https://github.com/Richard-Seaman/FinalProject-105

5.6.5.

39 of 54

6. TESTING

Testing is incredibly important for any application. This is particularly true for this
project, which consists of many different hardware, software and network
components which must all work together to achieve the overall project objectives.

This section outlines the formal testing procedures and cases which were carried out
to test this project. A number of white box and black box tests were undertaken.
Each test is described in turn and the test procedure and result are provided in each
case.

There was of course much informal testing carried out during the development
process itself. However, these tests were not captured in any form of documentation.

Nonetheless, these ongoing tests contributed to the overall quality of the project and
the ultimate success of the black box test cases.

6.1. WHITE BOX TESTING

A number of white box tests were carried out to ensure the correct operation of the
individual components within the system.

40 of 54

6.1.1. DHT Sensor

The sensor selected for the wireless sensor node was a DHT11 temperature and
humidity sensor. The sensor was wired up to the Arduino and a preliminary sketch
was developed to test the sensor readings and ensure the sensor responded to
changes in its environment.

Test Case Description DHT Sensor - Temperature
Tested By Richard Seaman
Test Date 07/06/20118

Prerequisites

The sensor must be wired upto the Arduino (as perthe final circuit design).

The WSN must be powered on.

The preliminary Arduino script must be used to print out the DHT sensor readings within the Serial
Monitor of the Arduino IDE.

sl ow M

The preliminary script must be running on the Arduino.

Test Conditions

Step # Step Details Expected Results Actual Results Pass / Fail
Record the initial temperature |A imately 20C
1) nperatly pproximately 21C Pass
reading fromthe Serial Monitor. |{room temperature)
Breath th
reathe overthe sensor The temperature The temperature rose from 21C to
2 repeatedly for 10 seconds, then Pass

readingshould rise. |25C.
record the temperature.

The temperature initially

Stop breathing overthe sensor |The temperature
P £ P continued to rise (dueto delayin

3 and record the temperature after|should fall back to . Pass
o sensor response) before falling
an additional 20seconds. roomtemperature.
back down to 21C.
Result PASS

41 of 54

TestCase Description

DHT Sensor - Humidity

Tested By Richard Seaman

Test Date 07/06/2018

Prerequisites
1 The sensor must be wired up to the Arduino (as perthe final circuit design).
2 The WSN must be powered on.

The preliminary Arduino script must be used to print out the DHT sensor readings within the Serial

Monitor of the Arduino IDE.

The preliminary script must be running on the Arduino.

TestConditions

Step # Step Details Expected Results Actual Results Pass / Fail
Approximately 50%
Record the initial humidity (room conditionon a
1 . . .) 54% Pass
reading from the Serial Monitor. |warm but not particularly
humid day)
Breathe overthe sensor o .
The humidity reading The temperature rose from 54%
2 repeatedlyfor 10 seconds, then . Pass
should rise. to 73%.
record the temperature.
Stop breathing overthe sensor |The humidity should fall
P & t . The humidity fell back down to
3 and record the temperature after|back to approximatley 55% Pass
an additional 20 seconds. what it was in step 1. >
Result PASS

42 of 54

6.1.2. WSN to BS Communication

The wireless sensor node (WSN) and base station (BS) communicate via their
respective Xbee devices. There are various LEDs included within the WSN and the
Xbee interfaces which were used as indicators for the communication process (see
Table 3). The data received by the BS was also checked to ensure that it matched
the data transmitted by the WSN.

z (0) 0000000000
¢ (0)0OO000000000
mgnoooooooooom
240} 00000000000
vs ())OO000000000
#5 (000000000000
00000000000
00000000000
00000000000

h

Figure 27 - Base Station and Wireless Sensor Node

Table 3 - XBee Shield Indicator LEDs (Sparkfun, 2018)

LED LED XBee Pin Default Operation Notes

Label Color Connection

PWR Red 33V Indicates power is present.

DIOS Green Associate/DIO5 Associated indicator — blinks when the XBee is associated with another
XBee.

DOUT Red DouUT Indicates wireless data is being received.

DIN Green DIN Indicates wireless data is being transmitted.

R5SI Green PWIMO/IRSSI Indicates relative signal strength (R3S1) of last received transmission.

43 of 54

Test Case Description

Tested By
Test Date

Prerequisites

WSN to Base Station Communication.

Richard Seaman
05/07/2018

The WSN circuit mustbe compl ete with the final WSN sketch running on the Arduinao.

The base station mustbe complete and the final python program must be running on the RPI.

The two Xbee devices mustbe configured accordingly within the same network.

T (w o |

The Serial Monitor of the Arduino |IDE and the console log of the python program mustbe visible.

Test Conditions

Step # Step Details Expected Results Actual Results Pass / Fail
Check that the Xbee end device |The DIO5 LED on the WSN's The DIOS LED blinki
1 {WSN) is connected to the Xbee |Xbee shield should be © L
reen.
coordinator (base station) blinking. 8
Wai t for a transmission and Two integer values
record the sensorreadingsbeing |corresponding to the
2 . L 23 and 57 Pass
transmitted from the WSN(from |temperature and humidity
the Serial Monitor]. readings from the DHT sensor.
The DIN LED on the WSN's
3 Ensure the datawas transmitted |Xbee shield should light up. The DIN LEDand the blue .
855
successfully from the WSN. The blue status LED on the status LEDboth lit up
WEN should al so light up.
The RX LED should lightup on
. tha Base Station's Xb .
Ensure the datawas received & 2ase Station s Abee The RX LEDIit up. The RSSI
4 . explorer. The RSSl LEDshould . Pass
successfully by the Base Station. |, o LEDIitup strongly.
lightup strongly, indicating a
good signal.
The TX LEC should light on the
Base Station's Xbee explorer.
5 Ensure an acknowledgement was|The DOUT and RSSI LEDs on the |All of the expected LEDs lit Pass
received by the WSN. WEN's Xbee shield should light [up.
up. Thegreen LED on the WSN
should light up.
.. The base station's
Ensure the transmission payload |, i
. interpretation of the .
{sensor readings) were L. The base station interpreted
6 . transmi ssi on payload should Pass
interpreted correctly by the Base the payload as 22 and 57.
. be the same as the sensor
Station. . .
readings recorded in step 2.
Result lPass

44 of 54

6.1.3. RPi Socket Control

A third-party library is utilised for issuing the various socket on/off commands. The
socket codes discovered during the sniffing exercise were tested to ensure each of
the sockets responded as expected.

Mq . ‘nﬂﬂﬂnmq 1 REMOTE CONTR, #UOTE CONTR,

/"i" .

/

Figure 29 - RPi with 433MHz Transmitter & Receiver

45 of 54

pi@richardsrpi: ./codesend 4308437
sending code[4308437]
pi@richardsrpi: ./codesend 4308445
sending code[4308445]
pi@richardsrpi: ./codesend 4308436

sending code[4308436]

pi@richardsrpi: ./codesend 4308434
sending code[4308434]

pi@richardsrpi:

Figure 30 - Issuing Socket Commands Using 433 Utils Library

Test Case Description RPi - Socket Control
Tested By Richard Seaman
Test Date 14/06/2018

Prerequisites

Socket control codes must be known.

Sockets must be plugged inand visible.
433Utils library installed on RPi.

Terminal window open at the 433 Utils folder.

Pa [[N =

Test Conditions

Step # Step Details Expected Results Actual Results Pass / Fail
1 Manually switch socket 1 on Socket 1 on Socket 1on Pass
2 sudo ./codesend 4308436 Socket 1 off Socket 1off Pass
3 sudo . fcodesend 4308444 Socket 1on Socket 1on Pass
4 Manually switch socket 2 on Socket 2 on Socket2on Pass
5 sudo . fcodesend 4308434 Socket 2 off Socket 2 off Pass
6 sudo . fcodesend 4308442 Socket 2 on Socket 2 on Pass
7 Manually switch socket 3 on Socket 3 on Socket3on Pass
8 sudo . fcodesend 4308433 Socket 3 off Socket 3 off Pass
9 sudo .fcodesend 4308441 Socket 3 on Socket3on Pass
10 Manually switch socket 4 on Socket4 on Socket4on Pass
11 sudo . fcodesend 4308437 Socket 4 off Socket 4 off Pass
12 sudo . fcodesend 4308445 Socket 4 on Socket4on Pass
13 Manually switch socket 5on Socket 5on Socket 5on Pass
14 sudo . Jcodesend 4308435 Socket 5 off Socket 5off Pass
15 sudo . fcodesend 2308443 Socket 5on Socket 5on Pass
Result PASS

46 of 54

6.2.

A number of black box tests were carried out to ensure that the system functioned as

BLACK BOX TESTING

a whole and that the Ul provided the following two features:

1. An ability to control (on/off) each of the wall sockets

2. An ability to view all monitored data.

6.2.1. Ul - Socket Control

The iOS application was installed on an iPhone 6. Each of the sockets were tested in

turn using the sliders provided on the “Sockets” tab in the application.

Test Case Description Ul - Socket Control
Tested By Richard Seaman
Test Date 29/07/2018
Prerequisites
1 Sockets must be plugged inand wisible,
2 Base Station must be powered on and running the required script.
E] App musthbeinstaled on device {(iPhone).
4 Base Station and Device musthbe connected to the internet.
Test Conditions
Step # Step Details Expected Results Actual Results Pass / Fail
Opean the app on tha device and
signinusing the foll owing
1 details: Signinsuccess. Succassfully signedin. Pass
Email = rseamanrpi @email.com
PW = RichardSeamanRPI1321]
The sockets tab and
informaticn on each of All ind fon dizpl g
information dis ed as
2 Mawvigate to the Sodkets tab. the sodiets and the last rad ey Pass
expectad.
sync time should be P
displayad.
The slider should ch
e.s.| ershouldenang s The status of socket1 was
position on the Ul After
Change the status of socket 1 changed from on to off. Aftera
. . afew moments, the i
using the slider, then checdk to . brief moment, the actual socket
3 _ K physical socketshould . Pass
see if the actual physical sodket 1 (bedroom) turned off, which
change to match the) A
changed staus (on/off) . turned off the light which was
status of the slider | dintoit
ugged intoit.
{on/off). piues
The slider should change
. & The status of socketl was
position on the Ul After
changed from off to on Aftera
. |afewmoments, the i
Rewveart the status change made in . brief moment, the actual socket
4 X physical socketshould . Pass
the previous step. 1 (bedroom) turned on, which
change to match the i .
. turnad on the lightwhich was
status of the slider | dintoit
ugged intoit.
{cn/off). pives
Repeatsteps 3 &4 for each of the Aszabove, for each of the
5 . Asabove., L Pass
remaining sockets remaining sockets.
Result |PASS

47 of 54

6.2.2. Ul - Sensors

The iOS application was installed on an iPhone 6. The “Sensors” tab was then
tested. The correct sensor was selected and the data gathered from this sensor was
viewed over the previous number of days. Precise times were checked to ensure
that the correct values were given.

[r——

IE = \
vodafone IE = + @ % 50%m) w
! Bacy Ts:sg
< Back < oy
2 50% @

27 Jul 2018 =5

70

12

21

Figure 31 - Sensors Tab & Data

48 of 54

Test Case Description

Tasted By
Teast Date

Preraquisitas

LI - Sensars
Richard Seaman
29/0F/2018

App musthe installed on dewice {(Phone).

Dewice must be connected to the internet.

There must be same historicsensor datain the Firebase database.

F [FAR [N R [2

Tast Conditions

Step # Step Details Expected Results Actual Results Pass / Fail
Open the app on the device and
sign in using the following
1 detail = Sign in success. Successfully signed in. Pass
Email =rseamanrpi®@zmail .com
PW =RichardSeamanRFI321!
Alist of availahle sensors
should be displayed. For [Alist of the available sensors
2 Navigate to the Sensors tab. this test, a single was displayed, with only one Pass
"DHT 11" sensaris sensor {DHT11)induded.
expected,
Adetailed screen should
appear with the latest The data far the current date
3 Select the DHT11 sensor. Pass
data for the selected was shown.
sensor shown.
There should be two
selectors at the top of
Enzure both termperature and the screen, one for Cycled badk and forth between
4 humidty are available for humidity and one for humidity and temperature by b
ass
selection. Cycle between the temperature. Selecting |tapping the selector. The LI
two by tapping on them. one should update the |updated as expected.
datadisplayed and the y-
axis units.
Avertical line with a . .
i Multiple times selected. The
label ahove itshould . .
Tap anywhere on the graph to vertical Iine and label followed
5 i X appear at the selected i Pass
display the value for that time. K . the selection and updated the
time which shows the .
. value accordingly.
value at that time.
The graph should update |Multiple dates selected. The
with data for the graph updated to show data for
selected date, provided |therelevant date. Next arrow
Mowve badk and farth in time .) P i
c e th tthe t Fih there is datain the was dizabled when the current b
using the arrows atthe top of the ass
g P database for thatdate. |date was selected. When a
screen.
The next arrow should |previous date with no data
be disabled ifthe current|avail able was selected, the
date is selected. graph was empty.
Result PASS

49 of 54

7. EvaLuation & CONCLUSION

As outlined in the introduction of this report, the project objectives were as follows:

1. Wirelessly monitoring an environmental condition within my house
2. Controlling a number of wall sockets within my home (on/off)
3. Providing a user interface to allow me to view the monitored data and control

the sockets.

Each of these three objectives were successfully achieved.

The wireless sensor node is used to wirelessly monitor the temperature and humidity
conditions within the office of my home. This sensor can easily be moved to another
location or room to record the environmental conditions there.

The base station is successfully able to control a number of wall sockets within the
home by issuing 433MHz RF signals with the corresponding on/off codes. Each of
the five sockets included can be turned on or off by the base station.

The iOS app achieves the third and final objective of providing a user interface to
view the monitored data and control the sockets. The app includes two tabs. The first
tab is for controlling the sockets and the second tab is for viewing the monitored
data.

Each of the tests that were carried out on the system passed. In addition, at the time
of writing this report, the system had been live for approximately one month and had
successfully gathered data without error. Not only is this evident when viewing
historic data within the app, but it can also be seen by viewing all of the recorded
sensor readings in the database json file included with this submission.

For the above reasons, one can conclude that the overall project was a success.

50 of 54

8. FURTHER DEVELOPMENT

Although the overall project was a success, there’s certainly room for further
development.

As mentioned within the Introduction of this document, the scope of this project was
limited and was to establish proof of concepts for two broad objectives:

1. Monitoring
2. Control

Over time, the system may evolve to include additional monitored points or additional
systems for control.

By using an Arduino within the wireless sensor node, the only limitation to what can
be sensed is the number of pins available, of which there are plenty of both digital
and analogue available. Additionally, entirely new wireless sensor nodes can easily
be included due to the use of XBee devices which establish a ZigBee network. The
XBee device on the base station acts as the coordinator over any routers or end
devices included. It's just a case of configuring any additional XBee devices
accordingly.

The exact same architecture could be used for a wireless node which controls
something rather than senses something. By simply including an actuator or relay (or
whatever device is required), instructions could be wirelessly transmitted from the
base station for the Ardunio in the wireless node to implement. The implication of this
would be that the wireless node would have to be awake and ready to receive
instructions, so there would be a power consumption implication. The increased
power requirements could be minimised however by various means (such as
synchronising the transmission of instructions to particular times etc.).

Additional radio-controlled wall sockets could easily be included too.

Rather than hardcoding the socket on/off codes in the base station’s program, it
would be better to include this information within the sensorMeta node of the
database. The program could then utilise arrays and automatically parse the
information available in order to control any number of sockets. This would make
adding or removing sockets much easier in the future.

51 of 54

9. BIBLIOGRAPHY

Carr, D. & Zemouiri, S., 2018. Sensors. Dublin: National College of Ireland.

DIGI, 2016. Wireless Connectivity Kit Getting Started Guide. [Online]
Available at:

131
[Accessed 03 08 2018].

DIGI, 2018. XBee/XBee-PRO S1 802.15.4 (Legacy). [Online]
Available at:

https://www.digi.com/resources/documentation/digidocs/pdfs/90000982.pdf
[Accessed 03 08 2018].

gpbl, 2018. SwiftChart. [Online]
Available at: https://github.com l/SwiftChart
[Accessed 03 08 2018].

Ninja Blocks, 2018. 433 Utils. [Online]
Available at: https://github.com/ninjablocks/433Utils
[Accessed 28 07 2018].

niolabs, 2018. python-xbee. [Online]
Available at: https://github.com/niolabs/python-xbee
[Accessed 03 08 2018].

Rapp, A., 2016. xbee-arduino. [Online]

Available at: https://github.com/andrewrapp/xbee-arduino
[Accessed 03 08 2018].

Sparkfun, 2018. XBee Shield Hookup Guide. [Online]

Available at: https://learn.sparkfun.com/tutorials/xbee-shield-hookup-guide
[Accessed 03 08 2018].

52 of 54

10. APPENDIX

The documents listed below were included with this report in the zipped project
submission folder. The file names/folders are numbered as they appear in the
following list:

File Name Type | Description
1 Project Report Proposal PDF [The initially submitted document
2 | Requirements Specification | PDF | The initially submitted document
3 | Project Analysis & Design PDF [The initially submitted document
4 Testing PDF The initially submitted document
4a | Testing XLSX The excel workbook with each of the
test cases.
5 | Project Planner PDE The project management Gantt Chart
complete until week 11.
6 Project Log PDF The initially submitted document.
7 Github Clone — WSN Folde A_clone of th(_a wireless sensor node’s
r Github repository
8 Github Clone — Base Station Folde | A cloqe of the base station’s Github
r repository
9 | Github Clone — i0S App Folde | A cloqe of the iOS app’s Github
r repository
The Firebase real-time database
exported as a JSON file. Note that
10 | Database Export JSON | his file includes all of the gathered
data (at the time of export).
Folde Some of the archived log files
11 | Base Station Log Files . produced by the Main.py program
running on the base station.

53 of 54

1. GITHUB REPOSITORIES
The Github repository links for this project are provided below.

The sketch developed for the Wireless Sensor Node’s Arduino is available at the
Github repository below:

‘ , hitpsfgithub. com'Richard-Seaman/FinalProject-Arduino

The python program developed for the Base Station is available at the Github
repository below:

‘ ’ https-f'github. com/Richard-Seaman/FinalProject-Rp

The source code for the iOS application is available at the Github repository below:

‘ ' hitps://github.com/Richard-Seaman/FinalProject-10S

54 of 54

